

US Army Corps of Engineers

Construction Engineering Research Laboratory

USACERL Technical Report P-90/25 August 1990

AD-A227 012

Performance Indicators for Measuring Pavement Maintenance Management

by Benjamin Sliwinski Robert D. Neathammer

Roadways are a vital element in the infrastructure of Army installations; maintenance and repair costs for roadway pavement can be significant. Recently, the Army has developed the PAVER Pavement Maintenance Management System, which combines a standardized pavement inspection procedure with information in a computer database to determine the Pavement Condition Index (PCI)—a numerical measure of the state of road pavement.

However, data on monetary expenditures are not part of the PAVER system, but are reported annually in the Army Red Book. In this report, PAVER indices and Red Book data are examined for Army Major Commands and Installations. Furthermore, this report develops an analytical method that uses both PAVER PCI and Red Book data to measure and rank the performance of Army installation Directorates of Engineering and Housing (DEHs) in managing pavement maintenance.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official indorsement or approval of the use of such commercial products. The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED

DO NOT RETURN IT TO THE ORIGINATOR

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188). Washington, DC 20503

			~ 0100), Washington, DC 20303.
1. AGENCY USE ONLY (Leave Blank)	2. REPORT DATE	3. REPORT TYPE AND DATES CO	VERED
	August 1990	Final	
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS
Performance Indicators for	or Measuring Pavement M	laintenance Management	
	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	initionalico irrainagement	FAD 89-80004
6. AUTHOR(S)			\dashv
Benjamin Sliwinski and I	Robert D. Neathammer		
7. PERFORMING ORGANIZATION NAME	(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION
	(0) / 1112 / 1221/1223(22)		REPORT NUMBER
U.S. Army Construction	Engineering Research Lat	ooratory (USACERL)	1
PO Box 4005			USACERL TR P-90/25
Champaign, IL 61824-40	205		l
Champaign, 12 01024 40	703		[
9. SPONSORING/MONITORING AGENCY	(NAME(S) AND ADDRESS(ES)		10. SPONSORING/MONITORING
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		AGENCY REPORT NUMBER
USAEHSC			
ATTN: CEHSC-FB-P			ł
Fort Belvoir, VA 22060			
1 22000			
11. SUPPLEMENTARY NOTES			
Copies are available from	the National Technical I	nformation Service, 5285 Pe	ort Royal Road,
Springfield, VA 22161.			
12a. DISTRIBUTION/AVAILABILITY STAT	EMENT		12b. DISTRIBUTION CODE
A	. 4	•	
Approved for public relea	ise; distribution is unlimit	ea.	
40 ADOTRACT (Marie - 200			
13. ABSTRACT (Maximum 200 words)			
Roadways are a vital elemen		•	
roadway pavement can be si			
nance Management System,	which combines a standa	rdized pavement inspection	procedure with informa-
tion in a computer database			=

tion in a computer database to determine the Pavement Condition index (PCI)—a numerical measure of the state of road pavement.

However, data on monetary expenditures are not part of the PAVER system, but are reported annually in the Army Red Book. In this report, PAVER indices and Red Book data are examined for Army Major Commands and Installations. Furthermore, this report develops an analytical method that uses both PAVER PCI and Red Book data to measure and rank the performance of Army installation Directorates of Engineering and Housing (DEHs) in managing pavement maintenance.

14.	SUBJECT TERMS PAVER maintenance Red Book	pavements performance Directorates of Engineering and Housing	15. NUMBER OF PAGES 75 16. PRICE CODE
17.	SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified Unclassified Unclassified	20. LIMITATION OF ABSTRACT

FOREWORD

This work was conducted for the U.S. Army Engineering and Housing Support Center (USAEHSC), under the reimbursable task "Development of Performance Measurements for Pavements," Funding Acquisition Document (FAD) 89-80004. The USAEHSC Technical Monitor was Mr. Bob Williams, CEHSC-FB-P.

The project was performed by the U.S. Army Construction Engineering Research Laboratory (USACERL) through a contract to Research Associates, Champaign, IL. Mr. Benjamin Sliwinski is employed at Research Associates. Mr. Robert Neathammer, Facility Systems Division (FS), was Principal Investigator. Dr. Michael J. O'Connor is Chief of USACERL-FS. The USACERL technical editor was Mr. William J. Wolfe, Information Management Office.

COL Everett R. Thomas is Commander and Director of USACERL, and Dr. L.R. Shaffer is Technical Director.

CONTENTS

	SF298 FOREWORD LIST OF TABLES AND FIGURES	i iv vi
1	INTRODUCTION	1 1 1
2	ANALYSIS OF RED BOOK DATA	3
3	ANALYSIS OF PAVER AND RED BOOK DATA	20 20 30 34 38 40 43
4	DEVELOPMENT OF PAVEMENT MANAGEMENT PERFORMANCE INDICATORS	45
5	CONCLUSIONS	53
	APPENDIX A: Data Matrices for All Rank	54
	APPENDIX B: Correlation Matrices for Data Partitioned by MACOM	57
	APPENDIX C: Weather and Population Data	64
	APPENDIX D: Analysis of Variance Tables	66
	DISTRIBUTION	

Acces	sion For	
PTIS	GRA&I	10
Unann	ounced	ä
Justi	fication_	
By		
	ibution/	
" Avai	lability	Codes
	Aveil and	l/or
sein	Special	L
AN		

TABLES

Number		Page
1	Installation With Red Book Data	4
2	Summary Statistics For Red Book Data, 1980 - 1981	7
3	Summary Statistics For Red Book Data, 1983 - 1984	8
4	Summary Statistics For Red Book Data, 1985 - 1986	9
5	Summary Statistics For Red Book Data, 1987	10
6	Nomenclature	21
7	Correlation Matrix For Pavement of All Ranks	22
8	Correlation Matrix For Primary Pavements	33
9	Sierra AD PAVER and Red Book Data	35
10	Correlation Matrix for Sierra AD Data	36
11	Correlations For Weather and Population Variables	42
12	Summary Statistics For Major Commands	44
13	Rankings Based on Pavement Management Indicator - K_1	49
14	Rankings Based on Pavement Management Indicator - K_2	51
15	Rankings Based on Pavement Management Indicator - K_3	52
	FIGURES	
1	Average Annual Pavement Maintenance Unit Cost-Dollars/	
•	Installation (Millions)	12
2	Average Annual Pavement Maintenance Unit Cost-Dollars/ 1000 SY/Installation	12
3	Annual Weighted Average Unit Cost-Dollars/1000 SY/Installation	13
4	Annual Inflation-Adjusted (45%) Average Unit Cost-Dollars/1000 SY/Installation	13
5	Annual Spending for Roadways-Ft. Bragg	15
6	Annual Spending for Roadways-Ft. Campbell	15
7	Annual Spending for Roadways-Ft. Lewis	16
8	Annual Spending for Roadways-Ft. Polk	16
9	Annual Spending for Roadways-Ft. Richardson	17
10	Annual Spending for Roadways-Ft. Belvoir	17

FIGURES (Cont'd)

Number		Page
11	Annual Spending for Roadways-Ft. Benning	18
12	Annual Spending for Roadways-Ft. Jackson	18
13	Annual Spending for Roadways-Ft. Lee	19
14	Annual Spending for Roadways-Ft. Pickett	19
15	Average Red Book Pavement Maintenance Cost	24
16	Average Red Book Unit Cost	24
17	Average PCI at Last Inspection by 1987 Unit Cost	25
18	Deterioration Rate by 1987 Unit Cost	25
19	Deterioration Rate by Average Red Book Unit Cost	26
20	Average Pavement Area by Average Red Book Pavement Maintenance Cost	26
21	Projected 1989 PCI by Average Red Book Unit Cost	27
22	Deterioration Rate by Average Red Book Pavement Maintenance Cost	27
23	Average Pavement Area by Average Red Book Unit Cost	28
24	Deterioration Rate by Average PCI at Last Inspection	28
25	Average Pavement Age by Average PCI at Last Inspection	29
26	Average Pavement Age by Deterioration Rate	29
27	Average PCI at Last Inspection by 1987 Unit Cost for TRADOC Installations	31
28	PAVER Implementation by Average Annual Unit Costs for Maintenance	39
29	Installation Rankings by PCI	46
30	Installation Rankings by Deterioration Rate	47
31	Installation Rankings by Average Annual Unit Costs for Maintenance	31

PERFORMANCE INDICATORS FOR MEASURING PAVEMENT MAINTENANCE MANAGEMENT

1 INTRODUCTION

Background

Roadways are a vital element in the infrastructure of an Army installation, and maintenance and repair costs for roadway pavement can be significant. Recently, the Army has developed and implemented the PAVER Pavement Maintenance Management System¹ in order to more effectively manage pavement maintenance. This system consists of a standardized pavement inspection procedure and a computer database, which allows determination of a Pavement Condition Index (PCI). The PCI, which is a numerical index from zero to 100, is a measure of the pavement's structural integrity and operational condition. The PCI is computed as a function of distress type, severity, and quantity, and provides an objective and consistent measure of pavement condition. The PAVER system has been adopted by 55 Army installations, each of which has at least 1 year's measured PCI.

Data on monetary expenditures for pavement maintenance and repair are not a part of the PAVER system. This data is currently reported on an annual basis in the Army "Red Book."

It is believed that combining the Red Book expenditure data with the PAVER system PCI data provides an opportunity for assessing an Army installation's effectiveness in managing the maintenance and repair of its pavement.

Objective

The objective of the work presented in this report was to develop an analytical method of using available Red Book and PAVER PCI data to measure the performance of an Army installation Directorate of Engineering and Housing (DEH) in managing pavement maintenance.

Approach

Red Book data were obtained in ENABLE database format from the U.S. Army Engineering and Housing Support Center (EHSC) at Ft. Belvoir, VA. Supplemental hardcopy Red Book data was obtained from the U.S. Army Construction Engineering Research Laboratory (USACERL). PCI data was obtained from USACERL from the PAVER database for all U.S. Army Forces Command (FORSCOM), U.S. Army Training and Doctrine Command (TRADOC), and U.S. Army Materiel Command (AMC) installations which have implemented the PAVER System.

Red Book data was analyzed to examine yearly trends in pavement maintenance expenditures, and to determine potential indicators of performance in pavement maintenance management. In addition, the data was reviewed to identify missing or erroneous data.

PAVER system PCI data as received form USACERL was processed to determine installation average values for PCI, area of pavement, pavement age, inspection year, and rate of deterioration. During this processing, error checking was performed and erroneous or missing data identified. The final averaged data was combined with similarly averaged Red Book data for final analysis.

¹Mohamed Y. Shahin, Pavement Maintenance Management: The Micro PAVER System, Technical Report (TR) M-87/12/ADA187360 (U.S. Army Construction Engineering Research Laboratory [USACERL], September 1987).

In the final analysis, the combined PAVER and Red Book data were first subjected to correlation analysis. Scatterplots were produced for pairs of data showing some degree of correlation; these scatterplots were then reviewed to determine potential pavement maintenance performance indicators. A number of potentially useful parameters were identified which were then combined into pavement management indices (PMIs). Hypothetical rankings were then developed based on these indices.

2 ANALYSIS OF RED BOOK DATA

As indicated, Red Book data was provided in ENABLE database format for annual pavement maintenance and repair expenditures. Of the data elements provided, the element for the K5110 activity, "Roadways," was selected for analysis. Data were selected for the FORSCOM, TRADOC, and AMC installations listed in Table 1 below. For each installation, data were provided for: the budget unit quantity of pavement (BUQ) in thousands of square yards (KSY); the annual maintenance and repair cost (TOTCST) in dollars; and, the unit cost (UCOST) in dollars per thousand square yards. Also reported were the number of equivalent lane-miles and the unit cost per lane-mile. The lane-mile data was found to be erroneous, the conversion factor from square yards to lane-miles being consistently misapplied. Surprisingly, however, the unit cost per lane mile data was accurate. In addition to the error in the lane-mile data, one erroneous data point for Ft. McCoy (TOTCST) was deleted and corrected using the hardcopy Red Book data.

Table 1. Installations With Red Book Data

		PAVER
Installation	MACOM	Data File
FT. BRAGG	FORSCOM	BRAG
FT. CAMPBELL	FORSCOM	CAMP
FT. CARSON	FORSCOM	CARS
FT. DEVENS	FORSCOM	DEVN
FT. DRUM	FORSCOM	DRUM
FT. HOOD	FORSCOM	HOOD
FT. INDIANTOWN GAP	FORSCOM	INDI
FT. SAM HOUSTON	FORSCOM	SAMH
FT. LAWTON	FORSCOM	
FT. LEWIS	FORSCOM	LEWS
FT. MCCOY	FORSCOM	MCCY
FT. MCPHERSON	FORSCOM	MCPH
FT. MEADE	FORSCOM	
FT. RILEY	FORSCOM	RILY
FT. SHERIDAN	FORSCOM	SHER
FT. STEWART	FORSCOM	STEY
FT. IRWIN	FORSCOM	IRWN
PRESIDIO OF SAN FRANCISCO	FORSCOM	PRES
VANCOUVER BARRACKS	FORSCOM	
YAKIMA FIRING CENTER	FORSCOM	
FT. GREELY	FORSCOM	GREE
FT. RICHARDSON	FORSCOM	RICH
FT. WAINWRIGHT	FORSCOM	WAIN
PETROLEUM DIVISION	FORSCOM	
PANAMA	FORSCOM	
FT. ORD	FORSCOM	ORD
FT. POLK	FORSCOM	POLK
FT. BELVOIR	TRADOC	
FT. BENNING	TRADOC	BENN
FT. BLISS	TRADOC	 -
FT. CHAFFEE	TRADOC	CHAF
FT. DIX	TRADOC	DIX
FT. EUSTIS	TRADOC	EUST
FT. GORDON	TRADOC	
FT. BENJAMIN HARRISON	TRADOC	
FT. A.P. HILL	TRADOC	HILL
FT. JACKSON	TRADOC	JACK
FT. KNOX	TRADOC	KNOX
FI. KNOX FT. LEAVENWORTH	TRADOC	
FT. LEE	TRADOC	
FT. MCCLELLAN	TRADOC	
	TRADOC	
FT. MONROE	TRADOC	
FT. HAMILTON	TRADOC	PICK
FT. PICKETT	TRADOC	. 2011
FT. RUCKER	TRADOC	
FT. SILL	TRADOC	LEOW
FT. LEONARD WOOD	TRADOC	77V4

Table 1 Continued. Installations With Red Book Data

		PAV	/ER			PAVER
Installation	MACOM	Data	File	Installation	MACOM	Data File
ANNISTON	AMC			LAKE CITY	AMC	
LETTERKENNY	AMC			LONE STAR	AMC	LSTR
LEXINGTON BG	AMC			LONGHORN	AMC	LHRN
NEW CUMBERLAND	AMC			LOUISIANA	AMC	
PICATINNY	AMC			MILAN	AMC	
PINE BLUFF	AMC			NEWPORT	AMC	
RED RIVER	AMC			RADFORD	AMC	
REDSTONE	AMC			RAVENNA	AMC	
ROCK ISLAND	AMC			RIVERBANK	AMC	
ROCKY MOUNTAIN	AMC			SCRANTON	AMC	
SACRAMENTO	AMC			SUNFLOWER	AMC	
SAVANNA	AMC			TWIN CITIES	AMC	
SENECA	AMC	5	ENE	ETHAN ALLEN	AMC	
SHARPE	AMC			VOLUNTEER	AMC	
SIERRA	AMC	5	SERA	HAVTHORNE	AMC	
TOBYHANNA	AMC			MAINZ	AMC	
TOOLE	AMC			MISSISSIPPI	AMC	
WATERVLIET	AMC			LIMA	AMC	
CORPUS CHRISTI	AMC			DETROIT ARSENAL	AMC	
MCALESTER	AMC			FT. MONMOUTH	AMC	
PUEBLO DEPOT	AMC			JEFFERSON	AMC	
FT. WINGATE	AMC			ST. LOUIS SUP	AMC	
UMATILLA	AMC			ARMY MET AND MECH	AMC	
BADGER	AMC	E	BADG	HARRY DIAMOND	AMC	
CORNHUSKER	AMC			NATICK	AMC	
HOLSTON	AMC			WHITE SANDS	AMC	
INDIANA	AMC			YUNA	AMC	
IOWA	AMC			DUGWAY	AMC	
JOLIET	AMC			ABERDEEN	AMC	
KANSAS	AMC					

Of the Red Book data, only the BUQ, TOTCST, and UCOST data were subjected to analysis. Data were available on floppy disk for the years 1980, 81, 83, 84, and 85, for FORSCOM and AMC; and the years 1980, 81, 84, and 85 for TRADOC. Additional hardcopy Red Book data were obtained from USACERL for the years 1986 and 1987 and keyed into the existing ENABLE database. The Red Book data were analyzed as follows.

Summary Statistics

Summary statistics were developed for: BUQ, the pavement area in KSY; TOTCST, the annual maintenance and repair cost reported as activity K5110; and UCOST, the unit cost for maintenance and repair, in dollars per KSY. Summary statistics were developed separately for FORSCOM, TRADOC, and AMC installations for the years 1980 to 1987. The summary statistics are shown in Tables 2 - 5 below.

Table 2. Summary Statistics For Red Book Data, 1980 - 1981

Forscom 8	<u>30</u>					
Variable	Mean	Std Dev	Minimum	Maximum	Sum	N
BUQ	2234.48	2295.48	3.00	7674.00	55862.00	25
TOTCST	323101.20	276659.03	237.00	1098889.0	8077530.00	25
UCOST	254.21	366.35	24.99			
Tradoc 80	<u>)</u>					
Variable	Mean	Std Dev	Minimum	Maximum	Sum	N
BUQ	1865.14	1713.75	123.00	6590.00	39168.00	21
TOTCST					8181125.00	
UCOST	336.73					
AMC 80						
Variable	Mean	Std Dev	Minimum	Maximum	Sum	N
RUO	1020 22	993.56	22 00	4844 00	35303.00	34
					7639441.00	
TOTCST						
UCOST		1221.70	4.07	/1/1.74	10230.70	J- 1
Forscom 8	0.1					
Variable	Mean	Std Dev	Minimum	Maximum	Sum	N
BUQ	1900.15					
TOTCST				1121750.0	7974648.00	26
UCOST						26
Tradoc 8	<u>1</u>					
Variable	Mean	Std Dev	Minimum	Maximum	Sum	N
BUQ	1927.48	1629.09	123.00			21
TOTCST	460885.62	698842.12	60919.00	3337596.0		21
UCOST	309.75	243.92	36.22	1013.80	6504.69	21
AMC 81						
Variable	Mean	Std Dev	Minimum	Maximum	Sum	N
BUQ	1172.75	1927.36	55.00			36
_	200050 00	352326.31	1607 00	1351676.0	10729803.00	36
TOTCST	298050.08	332320.31	1.81			36

Table 3. Summary Statistics For Red Book Data, 1983 - 1984

_							
Forscom	83						
Variable	Mean	Std Dev	Minimum	Maximum	Sum	N	
BUQ	2294.12	2223.44	42.00	9136.00	59647.00	26	
TOTCST	667348.85		0.0	2322289.0	17351070.00	26	
UCOST	393.11	327.59	0.0	1249.89	10220.81	26	
AMC 83							
Variable	Mean	Std Dev	Minimum	Maximum	Sum	N	
BUQ	1033.04		23.00			56	
TOTCST	309103.25				17309782.00	56	
UCOST	383.57	535.96	0.0	3495.41	21480.01	56	
Forscom	8 4						
Variable	Mean	Std Dev	Minimum	Maximum	Sum	N	
BUQ	2063.85		42.00			26	
TOTEST	872402.12	1034508.75	1377.00	4581741.0	22682455.00	26	
UCOST	439.64	376.77	32.79	1651.76	11430.63	26	
Tradoc 8	<u>4</u>						
Variable	Mean	Std Dev	Minimum	Maximum	Sum	N	
BUQ	2120.95					21	
TOICST	558719.86	583441.85	14071.00	1958174.0	11733117.00	21	
UCOST	335.51	292.90	16.12	1110.08	7045.64	21	
AMC 84							
Variable	Mean	Std Dev	Minimum	Maximum	Sum	N	
BUQ	1089.48					56	
TOTCST	343717.00				19248152.00	56	
UCOST	436.11	523.12	2.16	2469.19	24422.42	56	

Table 4. Summary Statistics For Red Book Data, 1985 - 1986

	_					
Forscom 8	<u> 15</u>					
Variable	Mean	Std Dev	Minimum	Maximum	Sum	N
BUQ	1843.20	1582.29				30
TOTCST	924279.30	928540.43			27728379.00	30
JCOST	528.18	535.46	5.38	2023.00	15845.45	30
Tradoc 85	<u>.</u>					
Variable	Mean	Std Dev	Minimum	Maximum	Sum	N
BUQ	1886.68	1611.10	137.00			22
TOTCST		679231.71	0.0	2490920.0	11323647.00	22
UCOST	258.32	223.10		660.68	5683.09	22
AMC 85						
Variable	Mean	Std Dev	Minimum	Maximum	Sum	N
BUQ	1106.71	1149.89	8.00	6524.00	64189.00	58
TOTEST					14925531.00	58
UCOST	330.42			2114.64		58
Forscom 8	<u>36</u>					
Variable	Mean	Std Dev	Minimum	Maximum	Sum	N
BUQ	2750.11	1831.02	108.00	6443.00	52252.00	19
TOTEST	1148200.9	1046610.62	51908.00	3883578.0	21815817.00	19
UCOST	477.18		60.92	1464.75	9066.46	19
Tradoc 8	<u>6</u>					
Variable	Mean	Std Dev	Minimum	Maximum	Sum	N
BUQ	2270.00	2111.67	153.00			18
TOTEST	736031.33		31280.00	3486931.0	13248564.00	18
UCOST	409.88		31.82	1494.20	7377.91	18
AMC 86						
Variable	Mean	Std Dev	Minimum	Maximum	Sum	N
BUQ	1948.43	3139.65	31.00			53
TOTEST	475496.64		2184.00	3653538.0	25201322.00	53 53
					18209.80	

Table 5. Summary Statistics For Red Book Data, 1987

Forscom 8	<u>37</u>						
Variable	Mean	Std Dev	Minimum	Maximum	Sum	N	
BUQ	2725.60	1866.76	102.00	6972.00	54512.00	20	
TOTCST	898012.30	1227290.85	120.00	5675452.0	17960246.00	20	
UCOST	433.73	528.68	.08	2113.76	8674.52	20	
Tradoc 8	<u>7</u>						
Variable	Mean	Std Dev	Minimum	Maximum	Sum	N	
BUQ	2400.29	2259.59	153.00	7723.00	40805.00	17	
TOTCST	544337.24	711253.17	19614.00	2683746.0	9253733.00	17	
UCOST	260.45	255.88	26.93	988.10	4427.72	17	
AMC 87							
Variable	Mean	Std Dev	Minimum	Maximum	Sum	N	
BUQ	1595.73	1883.30	11.00	12037.00	89361.00	56	
TOTCST	421978.29	646140.72	108.00	3706698.0	23630784.00	56	
UCOST	506.92	836.64	.06	4945.45	28387.68	56	

Because N, the number of installations, varied from year to year due to missing or bad data, the mean total cost and the mean unit cost are the more useful statistics. The data from Tables 2 - 5 for these variables are summarized in the bar charts shown in Figures 1 and 2. The dollar amounts are not adjusted for inflation.

Inspection of Figures 1 and 2 reveals a well defined trend in the FORSCOM data for this period, and a more erratic pattern for the TRADOC and AMC data. The average annual cost for pavement maintenance in FORSCOM is seen to steadily increase, peaking in 1986. The TRADOC data, although more erratic, also peaks in 1986, as does the AMC data. On a unit cost basis, the FORSCOM data peaks in 1985, while the TRADOC data still peaks in 1986, and the AMC data peaks in 1987. The TRADOC expenditures are seen to be consistently less than those for FORSCOM after 1983, on a unit cost basis, and also lower than AMC for every year but 1986. Without additional information however, it is difficult to make any judgements regarding this cost difference. It is precisely for this reason that the PAVER data, to be examined in the next chapter, is so important.

Weighted Averages

The average unit cost data presented in Figures 1 and 2 represents the average unit cost per installation for each command. In comparing the two commands directly, a more useful statistic would be the average unit cost per square yard for the command. This weighted average is calculated by taking the total annual cost for the command and dividing it by the total square yardage of pavement in the command. The weighted average unit costs are shown in Figures 3 and 4. Figure 4 presents the costs adjusted for inflation assuming an annual rate of 4.5%. The trends observed in Figures 3 and 4 are similar to those observed in Figure 2; except that on this basis, the AMC data is now also less than FORSCOM for every year after 1983.

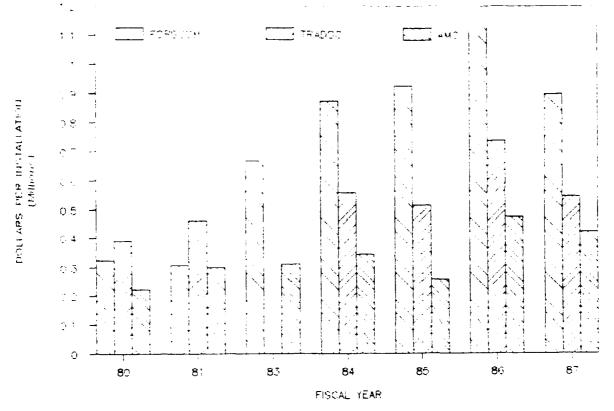


Figure 1. Average annual pavement maintenance unit cost-dollars/installation (millions.)

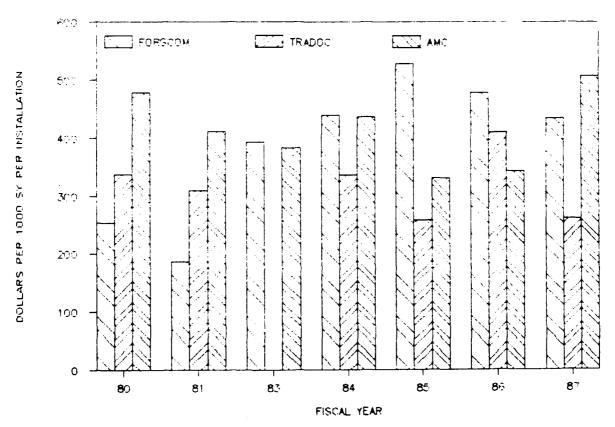


Figure 2. Average annual pavement maintenance unit cost-dollars/1000 sy/installation.

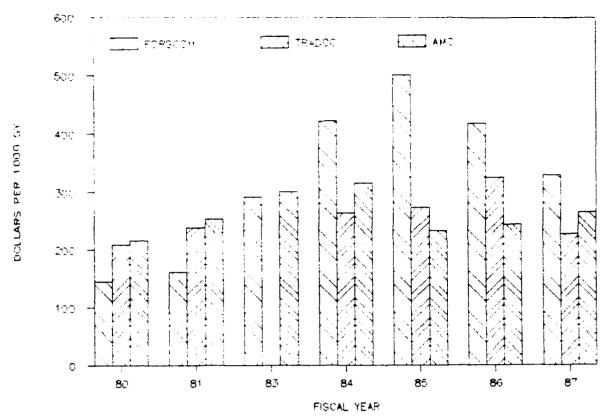


Figure 3. Annual weighted average unit cost-dollars/1000 sy/installation.

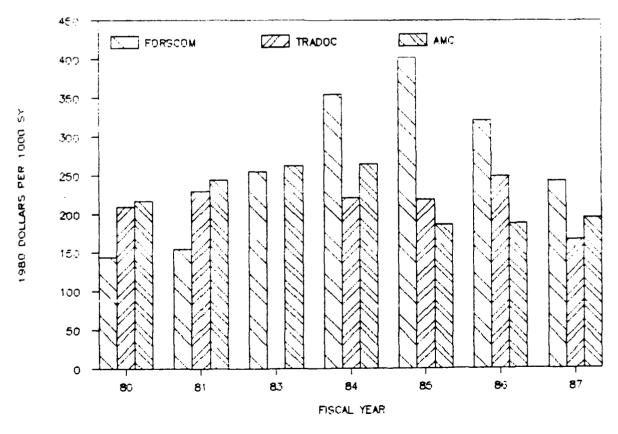


Figure 4. Annual inflation-adjusted (4.5%) average unit cost-dollars/1000 sy/installation.

Installation Trends

Trends in spending for pavement maintenance for individual installations are presented in Figures 5 through 14. Because of the small amount of data, (7 to 5 years), this data is of limited use. However, Figures 5 to 14 provide a sample of the trends observed for the individual installations.

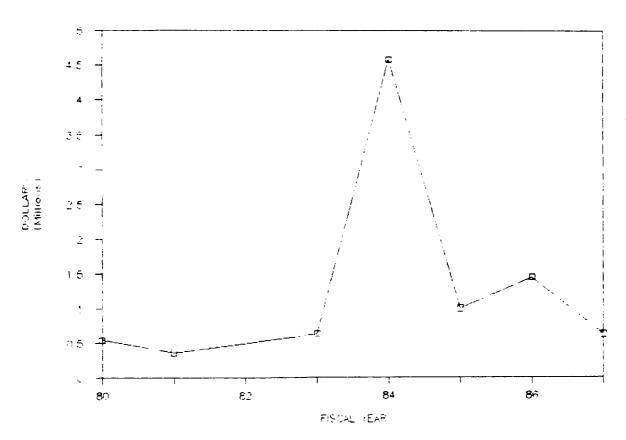


Figure 5. Annual spending for roadways—Ft. Bragg.

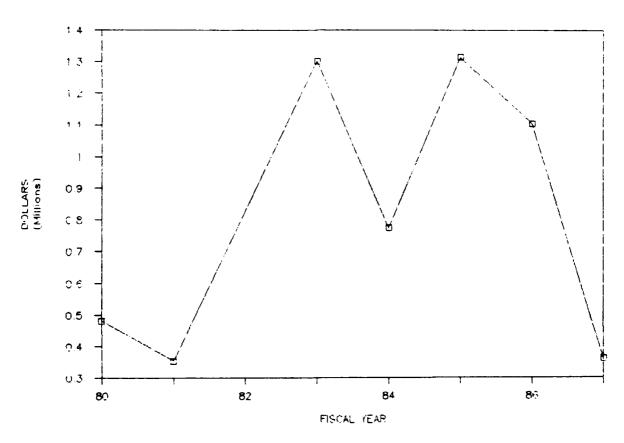


Figure 6. Annual spending for roadways-Ft. Campbell.

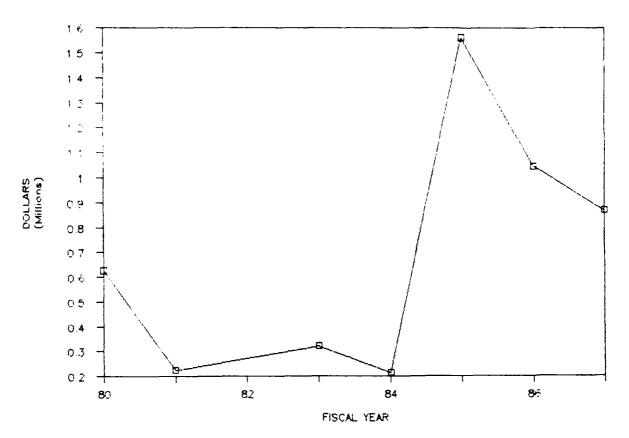


Figure 7. Annual spending for roadways—Ft. Lewis.

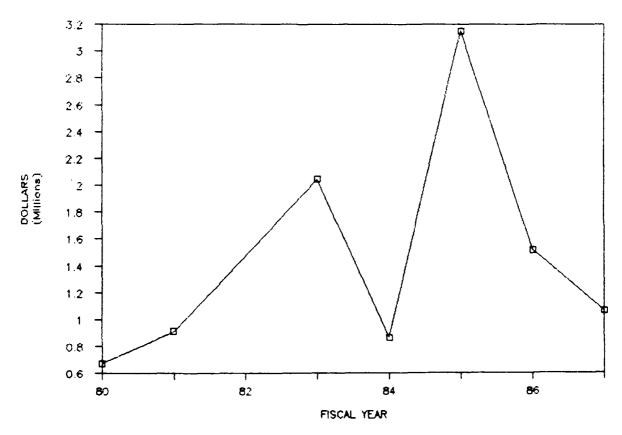


Figure 8. Annual spending for roadways—Ft. Polk.

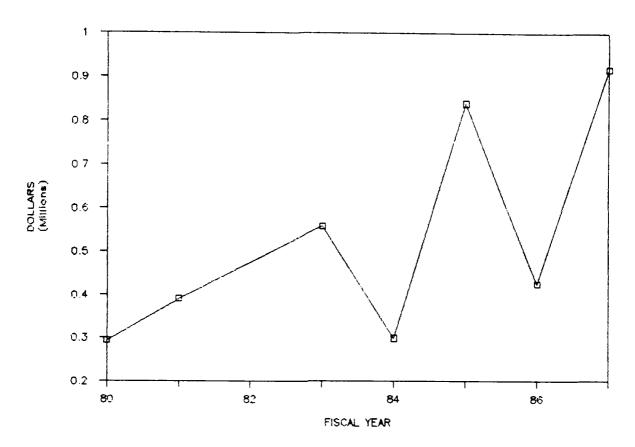


Figure 9. Annual spending for roadways-Ft. Richardson.

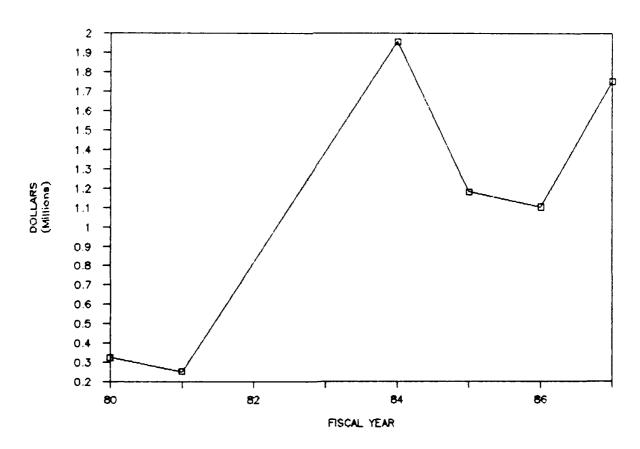


Figure 10. Annual spending for roadways-Ft. Belvoir.

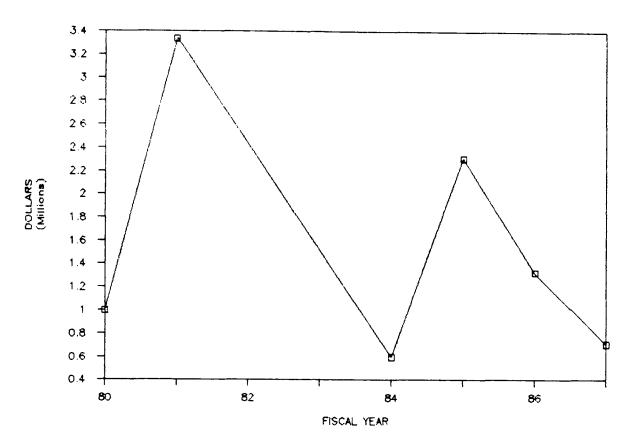


Figure 11. Annual spending for roadways-Ft. Benning.

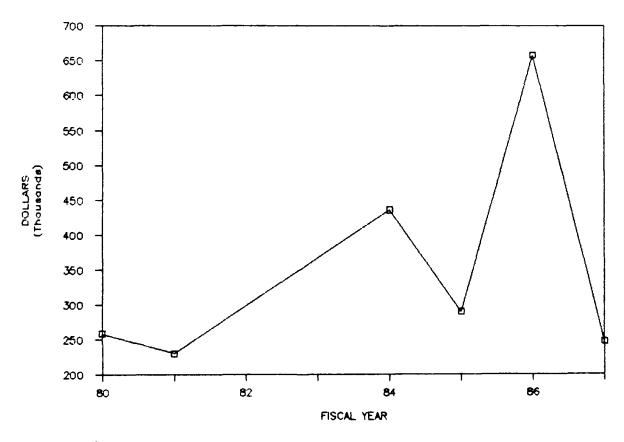


Figure 12. Annual spending for roadways-Ft. Jackson.

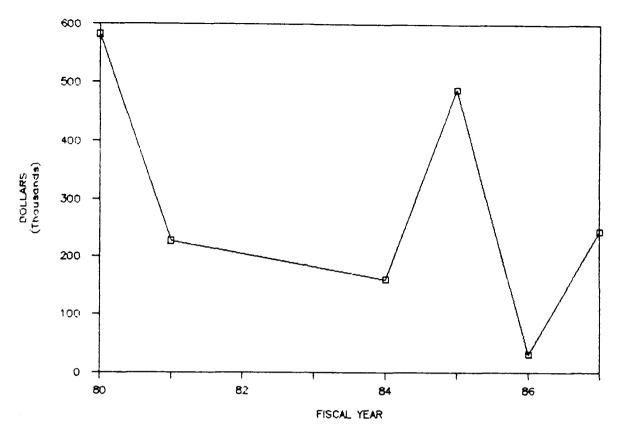


Figure 13. Annual spending for roadways-Ft. Lee.

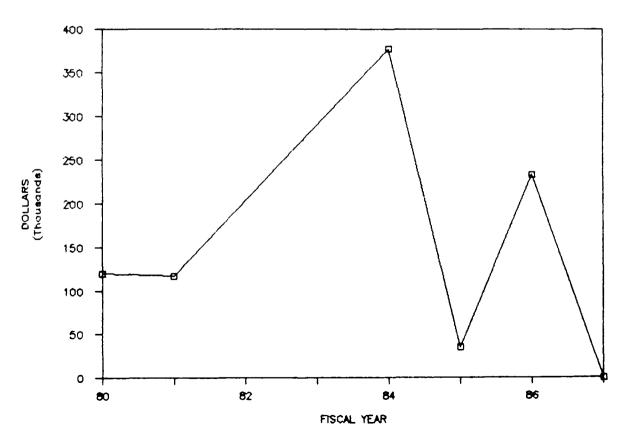


Figure 14. Annual spending for roadways-Ft. Pickett.

3 ANALYSIS OF PAVER AND RED BOOK DATA

PAVER system data, provided by USACERL, consisted of sectional PCI data for each of the FORSCOM, TRADOC, and AMC installations for which PAVER is currently implemented. For each section, data was provided on section area in square yards (SY), section rank (primary, secondary, tertiary), section type (asphaltic concrete, portland cement concrete), construction date, last inspection date, and PCI at the last inspection date. For each installation, these data were processed to determine weighted averages (based on section area) for: pavement age, rate of deterioration, PCI at last inspection; and, the projected 1989 PCI. The deterioration rate was calculated by subtracting the PCI at last inspection from an assumed initial PCI of 100 and dividing the result by the pavement age to determine the decrease in PCI points per year. The projected 1989 PCI was determined based on the deterioration rate and the PCI at last inspection. Pavements having a PCI of 100 at the date of last inspection were assigned a deterioration rate of 3 points/year based on PAVER system guidelines. The data were processed once including pavements of all ranks, and once including only primary rank pavements. These two data sets were analyzed separately.

Based on examination of the data, and by trial and error, it was determined that several error conditions could exist in the data. These conditions were:

- a. Missing construction or inspection date
- b. PCI not equal to 100 for pavement of zero age
- c. Construction date occurring after inspection date.

When data containing these errors occurred, the data was rejected from further processing.

The Red Book data was also subjected to processing prior to being combined with the PAVER system data for analysis. The Red Book data as received was partitioned into databases by year. These yearly databases were combined into one large database containing only data for the K5110 activity. From this database small files were exported for each installation. These files were then processed to determine for each installation the average annual pavement area in thousands of square yards (KSY), the average annual cost for maintenance, and the average annual unit cost for maintenance. The average annual unit cost was calculated in reported dollars and, corrected for inflation, in 1980 dollars. This data, and data for FY87, were merged with the PAVER system data. The merged data matrices for all pavement ranks and pavement of primary rank are included in Appendix A.

Data Analysis - Pavement of All Ranks

Table 6 below contains the data nomenclature used in the analysis. Since a primary goal of this work effort was to evaluate the relationship between the PAVER system data and the Red Book data, correlations were developed among all the PAVER and Red Book variables. This correlation matrix is shown in Table 7.

Table 6. Nomenclature

SY Installation square yardage from PAVER system - Square yardage of asphaltic concrete, from PAVER system ACSY PCSY - Square yardage of Portland cement concrete, from PAVER system AGE - Average pavement age at last inspection, based on PAVER system data IPCI - Average PCI at last inspection, based on PAVER system data PCI89 - Average projected 1989 PCI based on PAVER system data DRATE - Average pavement deterioration rate points/yr, based on PAVER system data RKSY - Installation square yardage in thousands, from Red Book data CAV - Installation average annual pavement maintenance cost in dollars based on Red Book data UCAV - Installation average annual unit cost in dollars per thousand square yards for pavement maintenance, based on Red Book data UCADJ - Installation average annual unit cost in 1980 dollars per thousand square yards, adjusted regionally using AR415-17 factors. - Installation square yardage for 1987 in thousands, from Red Book KS87 UC87 - Installation unit cost for pavement maintenance in 1987 dollars per thousand square yards.

Examination of the correlation matrix in Table 7 indicates significant correlations between the Red Book installation square yardage and the average annual maintenance cost; between the adjusted average annual unit cost and pavement age; and, between the deterioration rate and average annual maintenance cost and adjusted average annual unit cost.

The relationship between square yardage and average annual maintenance cost is positive, meaning that larger installations tend to have larger overall pavement maintenance costs. Another correlation, not as strongly significant, is a negative correlation between unit costs and installation square yardage, indicating that larger installations may benefit from economies of scale.

The negative correlation observed between age and the adjusted average annual unit cost would indicate that, when inflation and regional differences are eliminated, installations with older pavements tend to have lower unit costs for pavement maintenance.

The positive correlation between deterioration rate and average annual cost and adjusted average annual unit cost suggests that installations having higher pavement deterioration rates have higher costs. Also, although nonsignificant, the negative correlation between deterioration rate and age suggests that installations with older pavements have lower deterioration rates.

Finally, the largest correlation between PCI and any cost variable was between PCI and the 1987 unit cost. Since most of the PCI data was gathered during the 1986 to 1987 time frame, this tends to indicate that the PCI data is most closely related to current costs.

Table 7. Correlation Matrix For Pavement of All Ranks FORSCOM, TRADOC, and AMC

Correla	tions: SY	ACSY	PCSY	AGE	IPCI	PCI	89	
SY	1.0000	.9881**	.6399**	.0747	1854	158	1	
ACSY	.9881*	* 1.0000	.6117**	.0372	1623	144	.9	
PCSY	.6399*	* .6117**	1.0000	.2012	2836	303	6	
AGE	.0747	.0372	.2012	1.0000	2948	082	16	
IPCI	1854	1623	2836	2948	1.0000	.894	.8940**	
PCI89	1581	1449	3036	0826	.8940	** 1.000	0	
DRATE	.1229	.1083	.2083	3080	3167	532	6**	
RKSY	.6456*	* .6464* [*]	.4937*	1118	1933	164	1	
CAV	.5642*	* .5824 **	.4835*	3458	.0428	053	7	
UCAV	1412	1171	0412	1965	.2931	.147	0	
UCADJ	1316	1145	0029	4438*	.2904	.100	2	
KS87	.5046*	.4956*	.3915	1502	1858	120	19	
UC87	1769	1672	1505	1048	.4059 .3833			
	DRATE	RKSY	CAV	UCAV	UCADJ	KS87	UC87	
SY	.1229	.6456**	.5642**	1412	1316	.5046*	1769	
ACSY	.1083	.6464**	.5824**	1171	1145	.4956*	1672	
PCSY	.2083	.4937*	.4835*	0412	0029	.3915	1505	
AGE	3080	1118	3458	1965	4438*	1502	1048	
IPCI	3167	1933	.0428	.2931	.2904	1858	.4059	
PCI89	5326**	1641	0537	.1470	.1002	1209	.3833	
DRATE	1.0000	.0383	.4219*	.3801	.4565*	0586	.0414	
RKSY	.0383	1.0000	.6454**	3748	2717	.9456**	3158	
CAV	.4219*	.6454**	1.0000	.3127	.3991*	.5359*	.2552	
UCAV	.3801	3748	.3127	1.0000	.9051**	4578*	.6212**	
UCADJ	.4565*	2717	.3991*	.9051**	1.0000	3382	.4841*	
KS87	0586	.9456**	.5359*	4578*	3382	1.0000	3120	
UC87	.0414	3158	.2552	.6212**	.4841*	3120	1.0000	
Minimum pairwise N of cases:		29	Signif	Significance: *01 **		001		

Significance - a correlation is indicated as being significant at either the 99% (*), or the 99.9% (**) confidence level. These confidence levels indicate the probability that the correlation observed is exceptional, as opposed to arising from random variation.

^{*1} sq yd = .8361 m^2 .

Aside from the relationship between PCI and 1987 unit costs, the next largest correlation coefficient for PCI is between PCI and deterioration rate. This negative correlation, while not highly significant, tends to indicate that installations having low average PCI have higher pavement deterioration rates.

Scatterplots for some of the relationships discussed above are shown below.

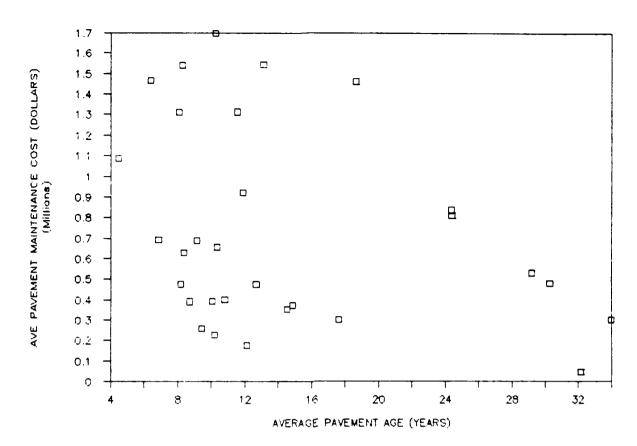


Figure 15. Average Red Book pavement maintenance cost.

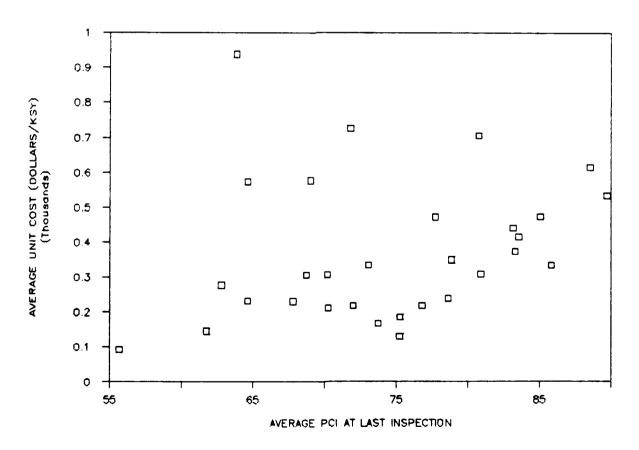


Figure 16. Average Red Book unit cost.

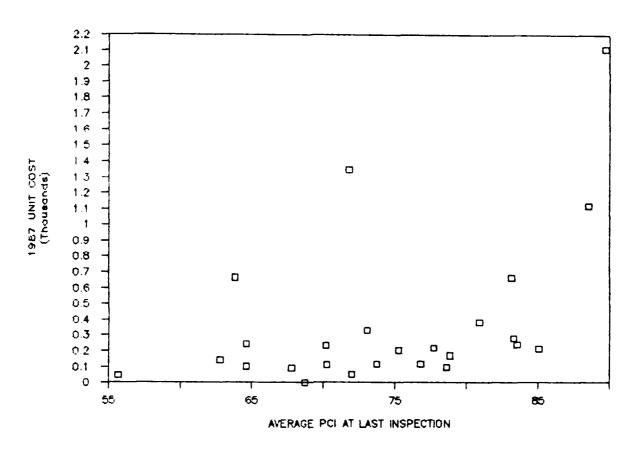


Figure 17. Average PCI at last inspection by 1987 unit cost.

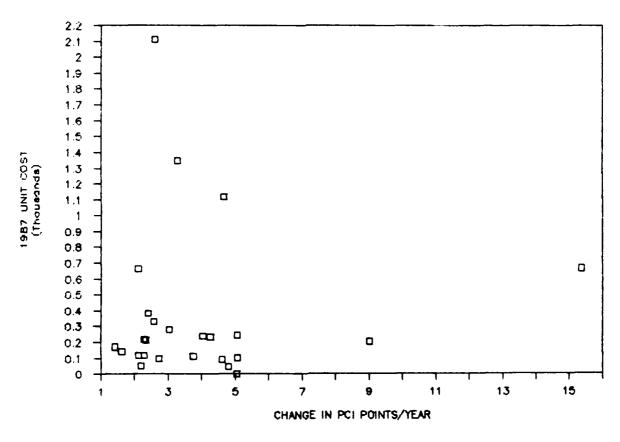


Figure 18. Deterioration rate by 1987 unit cost.

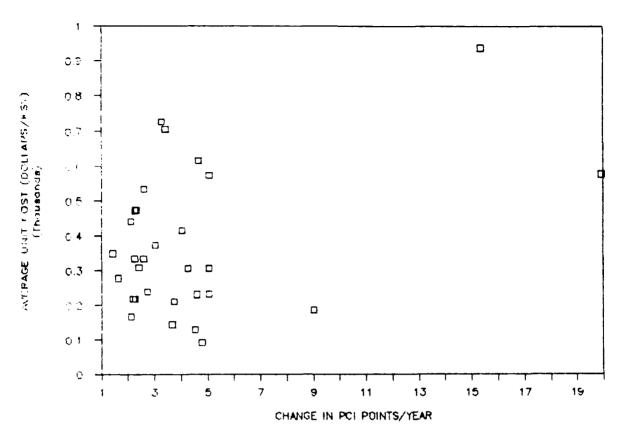


Figure 19. Deterioration rate by average Red Book unit cost.

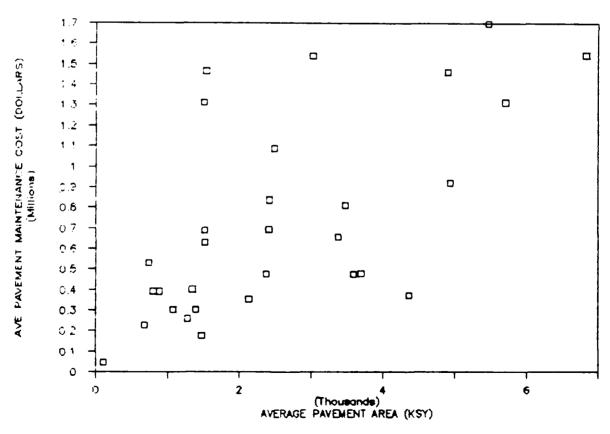


Figure 20. Average pavement area by average Red Book pavement maintenance cost.

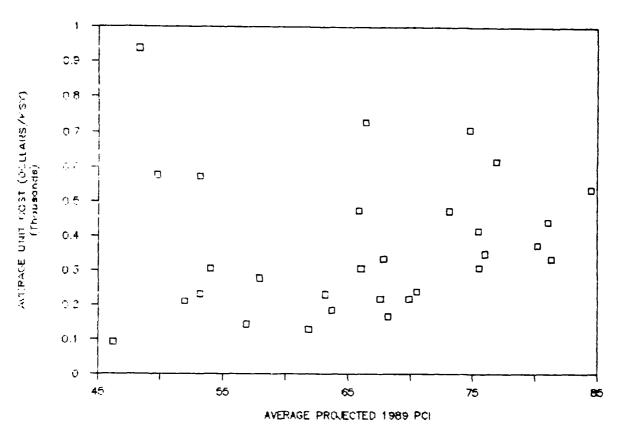


Figure 21. Projected 1989 PCI by average Red Book unit cost.

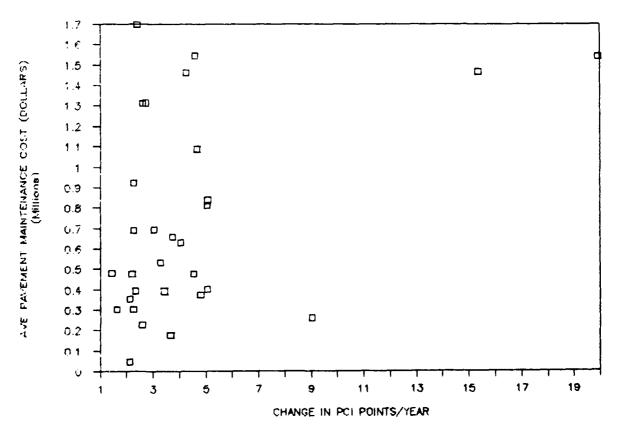


Figure 22. Deterioration rate by average Red Book pavement maintenance cost.

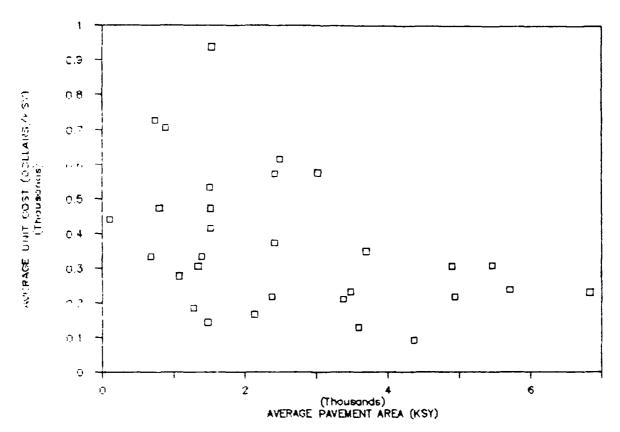


Figure 23. Average pavement area by average Red Book unit cost.

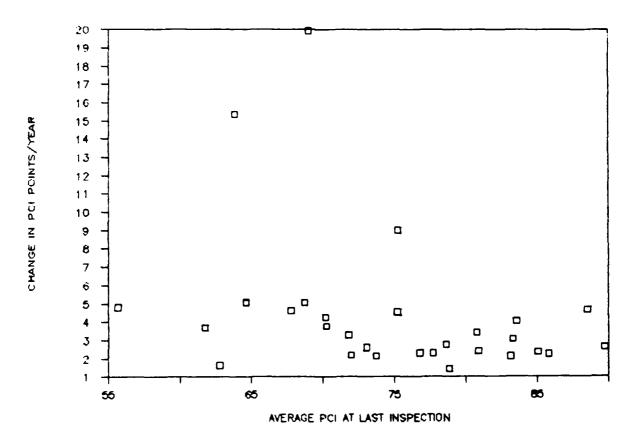


Figure 24. Deterioration rate by average PCI at last inspection.

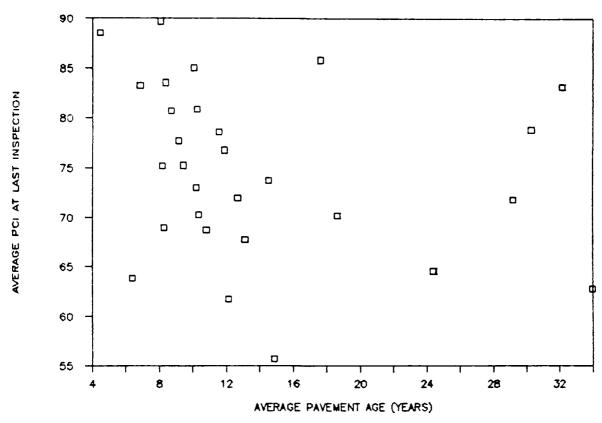


Figure 25. Average pavement age by average PCI at last inspection.

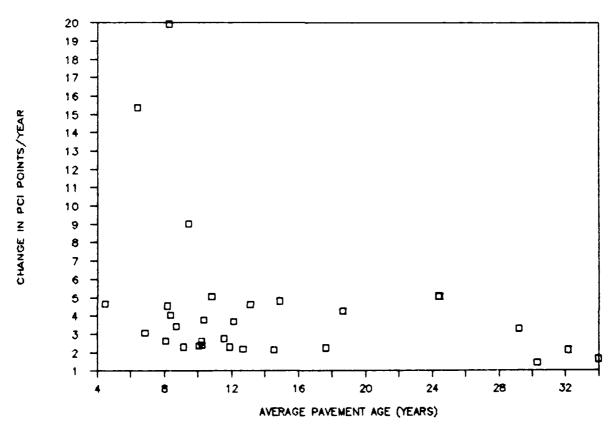


Figure 26. Average pavement age by deterioration rate.

Correlations were also determined with the data partitioned by major command. The results for FORSCOM installations were in most cases the same as for both commands combined. The TRADOC correlations however, where quite different from the combined results.

The TRADOC results indicated a much higher degree of correlation between the PCI variables and the Red Book cost variables. The TRADOC correlation matrix indicates significant correlations between PCI and average annual unit cost, adjusted average annual unit cost, and 1987 unit cost. The positive correlation between PCI and cost data suggests that TRADOC installations with higher pavement maintenance costs have higher PCIs. The highest correlation obtained, 0.9599 between PCI and 1987 unit cost, suggests as for FORSCOM and the combined data, that the greatest correlation between PCI and costs occurs for current costs. A scatterplot of this data is shown in Figure 27.

Significant correlations for TRADOC data also occur between square yardage of Portland cement concrete and average annual cost, and between average annual cost and Red Book square yardage. Unlike the FORSCOM data, no significant correlation occurred for deterioration rate, and unlike the combined data, no significant correlation occurred between age and adjusted average unit costs. The positive correlation between installation square yardage and average annual costs indicates that, as in the combined data, larger installations have greater pavement management costs. The additional correlation between square yardage of portland cement concrete and average annual cost, suggests that TRADOC installations having greater amounts of Portland cement concrete pavement have higher pavement maintenance costs.

Few significant correlations were observed for the AMC data, to some extent due to the small number (4) of installations for which data was available. Correlations similar to FORSCOM, TRADOC, and the combined data set, were observed. Correlations were observed between PCI and cost data, and between deterioration rate and cost data. Correlations were also observed between age and adjusted average annual unit cost which suggested that unit costs were lower for installations with older pavement.

Complete correlation matrices for FORSCOM, TRADOC, and AMC data are included in Appendix B.

Data Analysis - Primary Rank Pavement

PAVER data was processed to select those pavements of primary rank. This data was then averaged and merged with the annually averaged Red Book data as in the previous analysis. A correlation matrix was calculated for this data and is shown in Table 8.

Examination of the correlation matrix for primary pavement revealed the same trends with regard to sign of the correlations as was observed in the correlation matrix for pavement of all ranks. The strength of the correlations was generally lower for all variables. Because the general pattern of correlation was the same for the primary rank matrix and the matrix for all ranks, no scatterplots were generated.

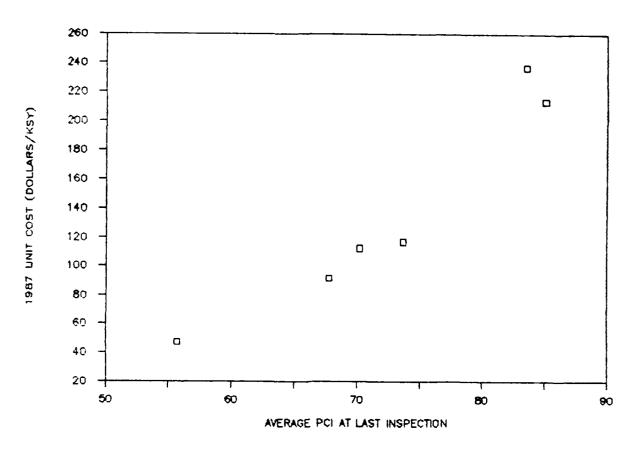


Figure 27. Average PCI at last inspection by 1987 unit cost for TRADOC installations.

The primary rank data set was also partitioned into FORSCOM and TRADOC data sets. Again the correlations for the FORSCOM data were in most cases similar to those of the combined data set. However, the FORSCOM primary rank data showed significant positive correlation between the area of Portland cement concrete and deterioration rate, and, a significant negative correlation between age and PCI, which were not seen for the "all pavements, FORSCOM only" data.

The TRADOC data again showed a much higher degree of correlation in the same manner as observed for the all rank data set, and, in addition, indicated a significant negative correlation between PCI and deterioration rate.

Because only three AMC installations in this sample had primary rank pavement, no useful correlations could be obtained for the AMC primary rank data.

Complete correlation matrices for the FORSCOM and TRADOC data are included in Appendix B.

Table 8. Correlation Matrix For Primary Pavements FORSCOM, TRADOC, and AMC

Correla	tions: SY	ACSY	PCS	Y AGE	IPCI	PCI	89
SY	1.0000) . 9 824	** .617	5** .0754	3444	369	3
ACSY	.982	1** 1.0000	.580	3** .0615	3273	352	7
PCSY	.617	5** .5803	** 1.000	0 .0773	2784	267	9
AGE	.075	.0615	.077	3 1.0000	3382	122	6
IPCI	344	1 3273	278	43382	1.0000	.889	6**
PCI89	369	33527	267	91226	.8896	** 1.000	0
DRATE	.372	.3527	.342	82663	2860	521	7**
RKSY	.688	3** .6714	** .598	3** .0514	3583	315	3
CAV	.648	5** .6763	.543	1**1706	1256	168	7
UCAV	1168	0709	105	20854	.1430	.066	6
UCADJ	0260	.0012	004	93123	.1366	006	4
KS87	.615			8* .0122	3705	295	7
UC87	216	1981	212	21151	.2950	.294	5
	DRATE	RKSY	CAV	UCAV	UCADJ	KS87	UC87
SY	.3726	.6888**	.6486**	1168	0260	.6155**	2163
ACSY	.3527	.6714**	.6763**	~.0709	.0012	.5564*	1981
PCSY	.3428	.5983**	.5431**	~.1052	0049	.5438*	2122
AGE	2663	.0514	1706	~.0854	3123	.0122	1151
IPCI	2860	3583	1256	.1430	.1366	3705	.2950
PCI89	5217**	3153	1687	.0666	0064	2957	.2945
DRATE	1.0000	.1446	.3835	. 2477	.3834	.1719	0772
RKSY	.1446	1.0000	.6497**	3571	2459	.9457**	3099
CAV	.3835	.6497**	1.0000	.3237	.4206*	.5366*	.2574
UCAV	.2477	3571	.3237	1.0000	.9006**	4488*	.6257**
UCADJ	.3834	2459	.4206*	.9006**	1.0000	3246	.4927*
KS87	.1719	.9457**	.5366*	4488*	3246	1.0000	3073
UC87	0772	3099	.2574	.6257**	.4927*	3073	1.0000
Minimum	pairwise l	V of cases:	27	Signi	ficance: *	01 **	001

Data Analysis - Sierra AD

In addition to the analysis of FORSCOM, TRADOC, and AMC data, a more detailed analysis of PAVER and Red Book data for Sierra Army Depot was also performed. Unlike the previous data, the Sierra data provided an opportunity to evaluate PAVER data for multiple inspection years. It was hoped that analysis of this data would better reveal the relationship between maintenance expenditures and pavement quality.

The Sierra data are summarized in Table 9. As in the previous analysis, the data was examined for pavement of all ranks and for primary rank pavement only. Because PCI data was gathered through inspections over several years, a slightly different set of variables was used in the analysis of the Sierra data. The definitions of these variables are as follows:

- Year Fiscal year
- IPCI Weighted average PCI for pavement inspected in a given fiscal year
- INSY Square yards of pavement inspected in a given fiscal year
- COST Total Red Book K5110 dollars reported for a given fiscal year
- KSY Total square yards of pavement at Sierra as reported in the Red Book for a given fiscal year, in thousands
- SYINPC Square yardage of pavement whose PCI increased in a fiscal year
- PCISY The product of the change in PCI and square yardage for all sections whose PCI increased in a fiscal year, summed over all sections
- CONSTR The square yardage of new pavement constructed in a fiscal year, as determined from PAVER inspection data
- SUMCR The sum of the square yardage constructed and the square yardage whose PCI increased in a given fiscal year

Table 9. Sierra AD PAVER and Red Book Data

ALL PAVEMENTS												
YEAR	IPCI	INSY	COST	KSY	SYPCIN	PCISY	CONSTR	SUMCR				
1983	85.96	752687	358764	1619	0	0	255330	255330				
1984	72.45	1747336	320069	1619	131554	3080094	64886	196440				
1985	86.19	265999	1404491	2316	60467	1113802	2962	63429				
1986	77.81	616693	638294	2316	172173	1509334	61118	233291				
1987	75.29	682724	1932219	1621	173898	2726296	14155	188053				
1988	74.26	688262			326977	5676464	26302	353279				
PRIMA	RY PAVE	MENTS										
1983	86.44	411692	358764	1619	0	0	77412	77412				
1984	79.87	230243	320069	1619	70935	1688415	13257	84192				
1985	82.34	105266	1404491	2316	14829	189221	0	14829				
1986	74.82	197198	638294	2316	42391	254051	1142	43533				
1987	76.75	159121	1932219	1621	15454	173424	2357	17811				
1988	73.01	238886			83575	1092659	492	84067				

The approach taken in the analysis of the Sierra data was to examine data elements which should be directly related to the costs of pavement maintenance. As before, IPCI, the inspection PCI, was considered. In addition, because multiple inspections occurred, it was possible to calculate the square yardage of pavement whose PCI increased in a given fiscal year, and also, the square yardage of new pavement constructed in a fiscal year. These two variables were expected to be directly related to maintenance expenditures. Also, in order to include consideration of the amount in which a section's PCI increased, the variable PCISY was developed by taking the product of the section square yardage and its change in PCI. A correlation analysis was performed to examine the relationships between these PAVER-based data elements and Red Book cost data for Sierra AD. The results are shown in Table 10, as Case 1, Case 2, and Case 3.

Case 1, in Table 10, shows the correlation between Red Book costs and PAVER data elements for pavement of all ranks at Sierra. None of the correlations are high enough to be significant given the small number of data points (5). The greatest correlation is -.6496 between cost and square yardage constructed, and is opposite in sign of what would be expected to occur. That is, we would expect Red Book costs to be higher for fiscal years when new pavement was constructed, not lower.

Table 10. Correlation Matrix for Sierra AD Data

CASE 1:								
Correla	tions: IPCI	INSY	COST	KSY	SYINPC	PCISY	CONSTR	SUMCR
IPCI	1.0000	7022	.0032	.3582	8266	9163	.4045	2867
INSY	7022	1.0000	5515	6125	.1984	.5837	.1314	.3817
COST	.0032	5515	1.0000	.1186	.3355	. 2642	6496	5485
KSY	.3582	6125	.1186	1.0000	.1061	2731	4278	4780
SYINPC	8266	.1984	.3355	.1061	1.0000	.7920	6857	.0779
PCISY	9163	.5837	.2642	2731	.7920	1.0000	6637	1034
CONSTR	.4045	.1314	6496	4278	6857	6637	1.0000	.6722
SUMCR	2867	.3817	5485	4780	.0779	1034	.6722	1.0000
Minimum	pairwise N of	f cases:	5	Signifi	cance: * -	01 **	001	
CASE 2:								
Correla	tions: IPCI	INSY	COST	KSY	SYINPC	PCISY	CONSTR	SUMCR
IPCI	1.0000	.5987	3250	2922	4853	1382	.7863	.3835
INSY	.5987	1.0000	6796	5458	2278	0694	.9539*	.7784
COST	3250	6796	1.0000	.1186	4163	4285	5349	9082
KSY	2922	5458	.1186	1.0000	0043	3164	5037	5190
SYINPC	4853	2278	4163	0043	1.0000	.8963	4501	.4067
PCISY	1382	0694	4285	3164	.8963	1.0000	2212	.5509
CONSTR	.7863	.9539*	5349	5037	4501	2212	1.0000	.6327 .
SUMCR	. 3835	.7784	9082	5190	.4067	.5509	.6327	1.0000
Minimum	pairwise N of	cases:	5	Signifi	cance: * -	.01 **	001	
CASE 3:								
Correla	tions: IPCI	INSY	COST	KSY	SYINPC	PCISY	CONSTR	SUMCR
IPCI	1.0000	6423	9216	3828	4818	0308	.3204	3924
INSY	6423	1.0000	.5770	1313	.9233	.7641	.4576	.9266
COST	9216	.5770	1.0000	.1186	.5566	.0426	4594	.4387
KSY	3828	1313	.1186	1.0000	4786	6224	2804	4874
SYINPC	4818	.9233	.5566	4786	1.0000	.8498	.4049	.9888**
PCISY	0308	.7641	.0426	6224	.8498	1.0000	.7843	.9121
CONSTR	.3204	.4576	4594	2804	.4049	.7843	1.0000	.5367
SUMCR	3924	.9266	.4387	4874	.9888**	.9121	.5367	1.0000
Minimum	pairwise N of	cases:	5	Signifi	cance: * -	.01 **	001	

Case 2, in Table 10, shows the correlations obtained for primary rank pavement. Again, none of the correlations are indicated as significant. The highest correlation is -0.9082 between cost and the sum of the square yardage constructed and the square yardage whose PCI increased. The negative sign of the correlation is again opposite of what is expected, since constructing new pavement or increasing the PCI of existing pavement should increase costs, not decrease them.

There are several possible causes for the poor correlations observed in Case 1 and Case 2. The first is the fact that usually not all the pavement is inspected each fiscal year, nor are the same sections inspected from year to year. In the analysis it was assumed that nearly all improved or newly constructed pavement would be inspected, but that may not have been the case. Secondly, it was not possible to determine exactly in what fiscal year a change in PCI occurred. If a change in PCI occurred between say, 1984 and 1985, the change was assigned to 1985, however, the change could have occurred in 1984, but was not inspected until 1985. This problem is compounded when the time between inspections is greater than 1 year. For the data set analyzed, 56% of the changes in PCI occurred over 1 year, 22% occurred over 2 years, and 21% occurred over 3 or more years. One percent of the changes occurred within the same year. Similarly, because of delays between contracting and construction, it is likely that funds shown as expended in a given fiscal year do not result in changes in pavement condition, or construction, until a later fiscal year. Because complete PAVER and Red Book data were only available for 5 years, it was not possible to fully explore this time series aspect of the data. However, the possibility of a lag effect in the relationship between the cost and pavement quality data was briefly analyzed by examining the correlation between each fiscal year's PAVER data with Red Book cost data from the previous fiscal year. These results, for primary pavement, are shown as Case 3.

Unfortunately, the results for Case 3 do not show much improvement over the previous correlations. No significant correlations are indicated between the cost and pavement quality variables. The strongest correlation of -0.9216 occurs between the inspection PCI and the cost, but again, the negative sign is counter to what would be expected. That is, we do not expect that funds expended in a previous year for maintenance or construction to result in lower PCIs the next year.

^{*}The reason for inspections to occur over intervals of less than 1 year could not be determined from the data, however, close inspection of the data indicated that they did indeed occur.

Duration of PAVER Implementation

It is expected that the implementation of PAVER by an installation will, over the long term, affect the costs of pavement management. Evaluation of these effects will require a longer time series of data than was available for this analysis. However, it was possible to estimate the average annual cost (starting in 1980) for pavement management for all the installations prior to PAVER implementation and compare these costs with costs for years after PAVER implementation. The results are shown in Figure 28. Costs have been adjusted for inflation assuming an annual rate of 4.5%. The results shown if Figure 28 are inconclusive. The implementation year costs are somewhat higher than for the average of the years before, possibly reflecting costs associated with initial PAVER inspections. The next year following costs are sharply lower, but by the second year after implementation, costs are about the same as before. A closer examination of effects of length of time of PAVER implementation must wait until data for several more years is available.

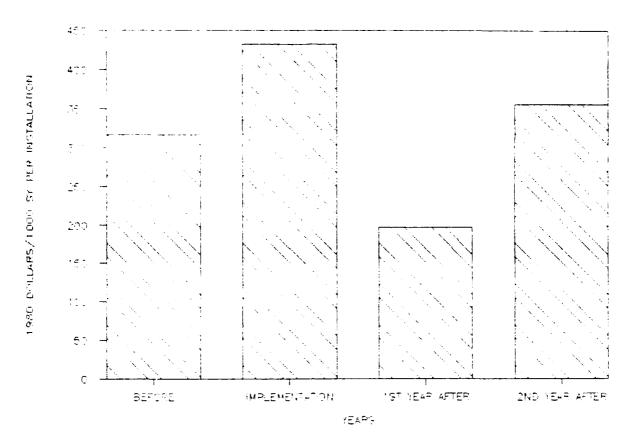


Figure 28. PAVER implementation by average annual unit costs for maintenance.

Effects of Other Variables

Up to this point, only the relationships between PAVER and Red Book data have been examined. Because of the low level of correlation observed in many cases, the effects of other variables such as weather and base population were examined. Also, data on the costs for pavement surface seal at FORSCOM installations were examined as an additional measure of the "costs of doing business," as a supplement to the AR415-17 regional cost adjustment factors used previously.

Nomenclature for the additional variables is as follows:

- 1. FREEZE annual freeze-thaw cycles, estimated from 1988 data
- 2. TMAX average annual maximum temperature °F
- 3. TMIN average annual minimum temperature of
- 4. SNOW average annual snowfall in inches
- 5. SNOW87 annual snowfall for 1987, inches
- 6. POPLTN base population in 1988, from Red Book
- 7. SSCOST cost for pavement surface seal at FORSCOM installations from USACERL ltr. to FORSCOM FCEN-RDF dated 28 Nov 1988

All weather data was from "NOAA Local Climatological Data - Annual Summary With Comparative Data" summaries obtained for cities located near each of the installations. Population data was obtained from the Red Book. Population data was included as a surrogate for traffic data, which was not available in the PAVER database. All data used in this analysis are listed in Appendix C.

Correlations were examined between these variables and inspection PCI, deterioration rate, average annual cost, average annual unit cost, adjusted average annual unit cost, and unit costs for 1987. The results of the correlation analysis are shown in Table 11. There are several significant correlations. The deterioration rate is found to be significantly correlated with freeze-thaw cycles. The positive sign of the correlation indicates that installations having larger numbers of freeze-thaw cycles have higher pavement deterioration rates. Also, the 1987 unit cost was found to be significantly correlated with the 1987 snowfall. This positive correlation suggests that installations experiencing high snowfall amounts tend to have higher unit costs for pavement maintenance. This affect appears to occur for current years. It should be noted that the 1987 snowfall amounts are strongly correlated with annual average snowfall, indicating that 1987 was a very typical snowfall year. For this reason, the correlation of 1987 unit cost with annual average snowfall can probably be discounted, particularly since annual average cost did not correlate significantly with average snowfall.

The average annual cost is seen to be positively correlated with installation population. However, average unit costs are not correlated with population, which may indicate that the population variable is more an indication of installation size than an indicator of traffic.

No significant relationships were observed between any or the variables and the surface seal cost variable.

Table 11. Correlations For Weather and Population Variables

Correla	tions: RM	CSY IF	ci di	RATE CI	AV U	IC A V	UCADJ	
RKSY	1.000	0019	.03	383 .64	454**3	748 -	. 2717	
IPCI	193	1.00	00031	167 .04	428 . 2	931	. 2904	
DRATE	.038	31	.67 1.00	000 .4:	219* .3	801	.4565*	
CAV	. 645	4** .04	128 .43	219* 1.00	000 .3	1127	.3991*	
JCAV	374	18 . 29	31 .38	301 .3	127 1.0		.9051**	
UCADJ	271	.7 .29	04 .4!	565* .39	991* .9	051** 1	.0000	
UC87	315	.40	.04	114 .29	552 .6	212**	.4841*	
FREEZE	272			095*0			.0720	
TMAX	. 307						.0831	
TMIN	. 318		•				.0948	
SNOW	372			26709			.0541	
SNOW87	381			3480			.0661	
POPLTN	.605						.0436	
SSCOST	041	.44	11610	527 .0	692 .0	1729	.1487	
	UC87	FREEZE	THAX	THIN	SNOW	SNOW87	POPLTN	sscos
RKSY	3158	2725	. 3071	. 3188	3725	3816	.6056**	0412
IPCI	.4059	2779	0507	.0376	.0412	0165	.0227	.4416
DRATE	.0414	.4095*	.0341	0361	.0267	.0348	.3290	1627
CAV	. 2552	0685	. 2641	. 2562	0977	0932	.6537**	.0692
JCAV	.6212**	.1041	2365	2352	. 2787	. 2538	0643	.0729
JCADJ	.4841*	.0720	.0831	.0948	.0541	.0661	.0436	.1487
JC87	1.0000	.1716	2338	2330	.4990*	.5216*	0160	.2127
REEZE	.1716	1.0000	3481	3869	.5320**	.6074**	.0520	.1112
TMAX	2338	3481	1.0000	.9586**	7594**	6247**	.1767	.0108
TMIN	2330	3869	.9586**	1.0000	7497**	6185**	.2195	0827
NOW	.4990*	.5320**	7594**	7497**	1.0000	.9557**	1883	. 2438
SNOW87	.5216*	.6074**	6247**	6185**	.9557**	1.0000	1943	.1925
POPLTN	0160	.0520	.1767	. 2195	1883	1943	1.0000	.1546
	.2127	.1112	.0108	0827	. 2438	.1925	.1546	1.0000

Differences Among MACOMs

In the course of this analysis, differences have been observed in the data for the three major commands. The two most notable differences are the consistently lower unit costs for TRADOC compared with FORSCOM, and the higher degree of correlation observed between TRADOC PAVER and Red Book data. In order to examine possible reasons for these differences, summary statistics were developed for several of the variables found to be important in assessing pavement management. These summary statistics are listed in Table 12.

The summary statistics indicate only minor differences between the major commands in terms of average pavement age, PCI, and deterioration rate. A one-way analysis of variance test performed on these variables indicated that the small differences observed are not significant. The somewhat larger differences in average annual snowfall and freeze-thaw cycles were also examined and also were not found to be significant.

In terms of distribution of pavement within the data sample, the FORSCOM pavement was 29% primary and 71% other than primary. The TRADOC pavement was 40% primary and 60% other than primary, while the AMC pavement was 19% primary and 81% other than primary. Percentages of asphaltic concrete were: FORSCOM 91%, TRADOC 78%, and AMC 83%.

None of the differences observed between the PAVER or the weather data for the commands were found to be significant, and therefore it is unlikely that these variables are the source of the differences in the overall behavior of the data for the commands. Likewise, the differences in pavement rank and type between the commands is small, and pavement type was previously found to affect average cost only, not average unit cost. In addition, where pavement type did have an effect was in increased unit costs for installations with higher amounts of Portland cement concrete. TRADOC has slightly more Portland cement concrete than FORSCOM and still has lower unit costs.

Overall, the results suggest that variations observed among the commands may be due to differences in pavement management practices.

Table 12. Summary Statistics For Major Commands

		······································					
FORSCOM							
rokscon							
Variable	Mean	Std Dev	Minimum	Maximum	Sum	N	
						••	
SY	1765156	1327850	121322	4260265	37068271	21	
SYPR	516452	534391	4138	1899821	10845485	21	
SYOR	1248704	956093	81921	3210980	26222786	21	
ACSY	1612594	1199111	120895	3971804	33864470	21	
PCSY	83163	111475	0	356518	1746433	21	
OTSY	69398	118133	0	338759	1457368	21	
AGE	15.3	9.5	4.5	33.9	321.7	21	
IPCI	75.1	7.9	63.0	90.0	1577.0	21	
DRATE	4.8	4.7	1.4	19.9	100.5	21	
RKSY	2454	1672	106	5706	51542	21	
FREEZE	61.4	38.0	0.0	133.0	1289.0	21	
SNOW	28.4	31.8	0.0	109.9	597.0	21	
POPLTN	25142	19933	2008	66287	527982	21	
TRADOC							
Variable	Mean	Std Dev	Minimum	Maximum	Sum	N	
SY	1161552	808051	52096	2670590	10453964	9	
SYPR	465076	454159	27093	1371797	4185686	9	
SYOR	696475	502279	25003	1481289	6268278	9	
ACSY	906618	820048	45955	2292908	8159561	9	
PCSY	64079	118978	0	371811	576715	9	
OTSY	190854	265145	0	634981	1717688	9	
AGE	12.1	3.2	8.2	17.6	109.1	9	
IPCI	73.3	10.5	56.0	86.0	660.0	9	
DRATE	3.6	1.1	2.1	4.8	32.1	9	
RKSY	2829	1918	802	6830	25457	9	
FREEZE	73.0	14.9	51.0	93.0	657.0	9	
SNOW	12.2	8.4	.5	23.2	110.2	9	
POPLTN	30743	19116	9480	60500	276688	9	
AMC							
AMC							
Variable	Mean	Std Dev	Minimum	Maximum	Sum	N	
		300 300				••	
SY	1061236	936997	40280	2204899	4244942	4	
SYPR	205555	226086	0	487941	822218	4	
SYOR	855681	715331	40280	1716958	3422724	4	
ACSY	882204	881887	16386	1868422	3528817	4	
PCSY	19503	29744	0	62804	78013	4	
OTSY	159528	172860	0	340545	638112	4	
AGE	14.8	12.8	3.2	32.4	59.0	4	
IPCI	78.0	13.9	66.0	98.0	312.0	4	
DRATE	3.1	1.7	1.2	5.3	12.2	4	
RKSY	1237	431	756	1801	4948	4	
FREEZE	56.5	33.3	24.0	90.0	226.0	4	
SNOW	29.6	53.6	1.3	109.9	118.5	4	
POPLTN	1616	542	998	2100	6465	4	

4 DEVELOPMENT OF PAVEMENT MANAGEMENT PERFORMANCE INDICATORS

The low degree of correlation observed among some of the variables increases the difficulty of developing performance indicators. However, even the low level correlations provide some clues to possibly useful parameters. The correlation matrices indicated that the Red Book cost variables are related to the PCI at last inspection, the rate of deterioration, and the installation area. Of these variables, all but the installation area were examined as elements of a pavement management performance index. Installation area was omitted because it may be an indicator of economies of scale for the larger installations. Graphical rankings of the installations based on PCI, deterioration rate, and average unit cost are shown in Figures 29, 30, and 31.

It is understood that PCI is the ultimate indicator of pavement maintenance, that is, if an installation's pavement does not exceed some minimum PCI of, say 55, its pavement management is unsuccessful. The performance indicators developed here are intended to aid in distinguishing among installations which meet the minimum criteria.

Potential performance indicators were developed based on the data for pavement of all ranks for the combined FORSCOM, TRADOC, and AMC data. At a later date, as more TRADOC installations implement PAVER, it may be useful to develop separate TRADOC indicators due to the differences observed between the FORSCOM and TRADOC data sets.

Indicator Number One

The first potential performance indicator was developed by assuming a relationship:

$$UCAV = K_1 \times DRATE \tag{1}$$

exists. Implicit in this relationship is the assumption that the deterioration rate DRATE, is the independent variable. The equation can also be written as:

$$UCAV = K_1 \times \frac{(100 - IPCI)}{Age}$$
 (2)

This form of first order rate equation is similar to many well-known physical laws such as Fourier's law of heat transfer or Fick's law of mass diffusion. In this formulation, the deterioration rate acts as a determinant driving the expenditure of funds for maintenance. In this context the deterioration rate is seen as a measure of cumulative pavement distress mechanisms. The performance indicator is then K_1 , given by:

$$K_1 = \frac{UCAV}{DRATE} \tag{3}$$

The ranking of installations based on this indicator is shown in Table 13. Unfortunately, it can be seen immediately that this indicator is not successful since review of the PCI data reveals that Ft. Chaffee, indicated here as the maintenance champion, has a PCI of 56.

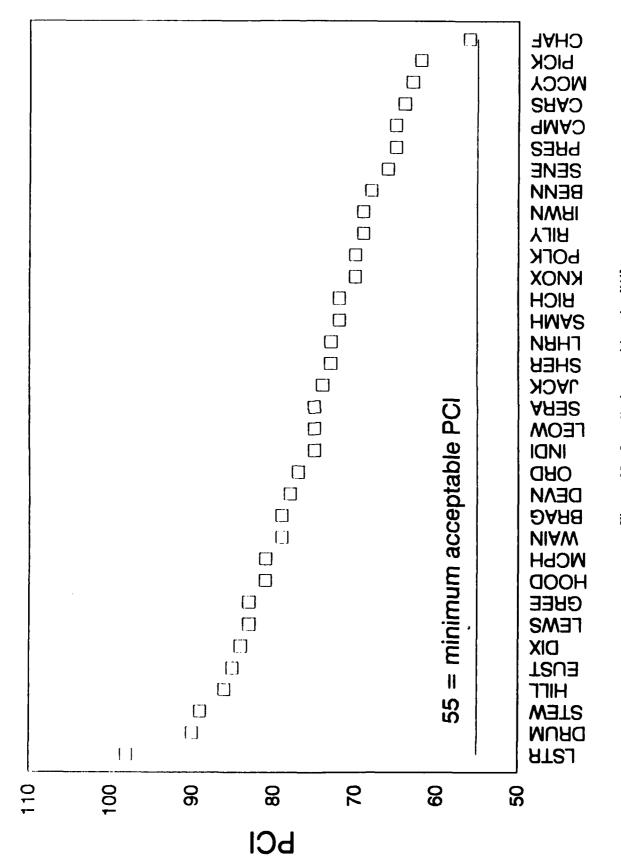


Figure 29. Installation rankings by PCI.

PRES CAMP IBMN CHAF **STEW BENN** *TEOM* **POLK** DIX KNOX **blck WCPH BICH** Ave. deterioration rate = 4.42 **CEMS HIS7 BRAG ARERA** MUAG SHEB HOOD **EUST QRO** DEAN HILL **HMA**S JACK GREE **WCC**A **NIAW** LHRN 20 5 0 S 0 DETERIORATION RATE (PCI POINTS/YR)

1"1

Figure 30. Installation rankings by deterioration rate.

RILY

INDI SENE

CARS

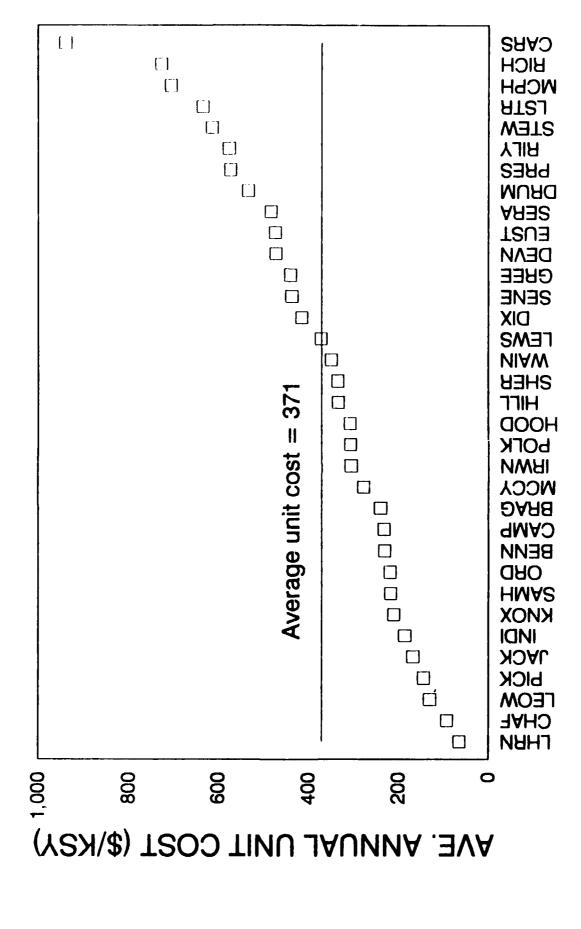


Figure 31. Installation rankings by average annual unit costs for maintenance.

Table 13. Rankings Based on Pavement Management Indicator - K1

ש	Took	WA COM	IDGI	DD 1 MP	UCAV	
K ₁	Inst.	MACOM	IPCI	DRATE	UCAV	
19.3	CHAF	TRADOC	56	4.8	92	
20.5	INDI	FORSCOM	75	9.0	185	
28.6	LEOW	TRADOC	75	4.5	130	
28.9	RILY	FORSCOM	69	19.9	576	
39.4	PICK	TRADOC	62	3.7	144	
45.6	CAMP	FORSCOM	65	5.1	231	
50.1	BENN	TRADOC	68	4.6	230	
54.2	LHRN	AMC	73	1.2	65	
56.1	KNOX	TRADOC	70	3.8	210	
60.5	IRWN	FORSCOM	69	5.1	305	
61.1	CARS	FORSCOM	64	15.4	938	
71.9	POLK	FORSCOM	70	4.3	306	
78.2	JACK	TRADOC	74	2.1	167	
82.5	SENE	AMC	66	5.3	437	
87.5	BRAG	FORSCOM	79	2.7	239	
95.2	ORD	FORSCOM	77	2.3	218	
98.8	SAMH	FORSCOM	72	2.2	217	
102.7	DIX	TRADOC	84	4.0	415	
113.2	PRES	FORSCOM	65	5.1	573	
122.2	LEWS	FORSCOM	83	3.0	372	
127.5	HOOD	FORSCOM	81	2.4	307	
128.5	SHER	FORSCOM	73	2.6	334	
132.0	STEW	FORSCOM	89	4.7	614	
147.9	HILL	TRADOC	86	2.3	333	
169.9	MCCY	FORSCOM	63	1.6	277	
178.9	SERA	AMC	75	2.7	483	
202.0	EUST	TRADOC	85	2.3	473	
204.4	DRUM	FORSCOM	90	2.6	533	
206.3	DEVN	FORSCOM	78	2.3	472	
206.5	MCPH	FORSCOM	81	3.4	705	
208.0	GREE	FORSCOM	83	2.1	440	
211.3	LSTR	AMC	98	3.0	634	
221.6	RICH	FORSCOM	72	3.3	726	
243.4	WAIN	FORSCOM	79	1.4	349	

Indicator Number Two

The failure of the first performance indicator showed the necessity of including PCI as an element in the indicator. Also, since assuming a form of physical law did not result in success, the development of the second indicator proceeded in an empirical fashion. The following observation can be made about the "best" managed pavement and the "worst" managed pavement:

" <u>Best</u> "	"Worst"
IPCI - high	IPCI - low
DRATE - low	DRATE - high
UCAV - low	UCAV - high.

Based on these criteria a performance indicator K2 was constructed as being:

$$K_2 = \frac{\text{UCAV } \times \text{DRATE}}{(\text{IPCI} - 55)} \tag{4}$$

Rankings based on this indicator are shown in Table 14. This indicator is attractive because it is easy to understand conceptually and, since it is constructed without relying on physical laws, weighting factors can be inserted such as:

$$K_2 = \frac{(W_1 \times UCAV) \times (W_2 \times DRATE)}{W_3 \times (IPCI \sim 55)}$$
(5)

to reflect command emphasis on different facets of pavement management.

Indicator Number Three

Out of reluctance to discard physical reasoning completely, indicator number three was constructed by modifying indicator number one as follows:

$$K_3 = \frac{UCAV}{DRATE} \times \frac{1}{(IPCI - 55)}. \tag{6}$$

Rankings based on this indicator are shown in Table 15.

Table 14. Rankings Based on Pavement Management Indicator - K_2

K ₂	Inst.	MACOM	IPCI	DRATE	UCAV	
4.3	LHRN	AMC	73	1.2	65	
19.0	JACK	TRADOC	74	2.1	167	
21.0	WAIN	FORSCOM	79	1.4	349	
22.9	ORD	FORSCOM	7 7	2.3	218	
24.4	HILL	TRADOC	86	2.3	333	
27.8	BRAG	FORSCOM	79	2.7	239	
28.2	SAMH	FORSCOM	72	2.2	217	
28.6	HOOD	FORSCOM	81	2.4	307	
29.2	LEOW	TRADOC	75	4.5	130	
33.1	GREE	FORSCOM	83	2.1	440	
36.8	EUST	TRADOC	85	2.3	473	
40.1	DRUM	FORSCOM	90	2.6	533	
40.1	LEWS	FORSCOM	83	3.0	372	
44.2	LSTR	AMC	98	3.0	634	
47.5	DEVN	FORSCOM	78	2.3	472	
48.1	SHER	FORSCOM	73	2.6	334	
51.8	KNOX	TRADOC	70	3.8	210	
58.1	MCCY	FORSCOM	63	1.6	277	
58.7	DIX	TRADOC	84	4.0	415	
65.2	SERA	AMC	75	2.7	483	
78.5	PICK	TRADOC	62	3.7	144	
82.3	INDI	FORSCOM	75	9.0	185	
83.0	Benn	TRADOC	68	4.6	230	
85.2	STEW	FORSCOM	89	4.7	614	
86.1	POLK	FORSCOM	70	4.3	306	
93.6	MCPH	FORSCOM	81	3.4	705	
112.5	IRWN	FORSCOM	69	5.1	305	
122.0	CAMP	FORSCOM	65	5.1	231	
141.7	RICH	FORSCOM	72	3.3	726	
210.6	SENE	AMC	66	5.3	437	
302.7	PRES	FORSCOM	65	5.1	573	
636.1	CHAF	TRADOC	56	4.8	92	
821.9	RILY	FORSCOM	69	19.9	576	
1633.0	CARS	FORSCOM	64	15.4	938	

Table 15. Rankings Based on Pavement Management Indicator - K3

						
K 3	Inst.	MACOM	IPCI	DRATE	UCAV	
1.0	INDI	FORSCOM	75	9.0	185	
1.4	LEOW	TRADOC	75	4.5	130	
2.1	RILY	FORSCOM	69	19.9	576	
3.0	LHRN	AMC	73	1.2	65	
3.6	DIX	TRADOC	84	4.0	415	
3.7	KNOX	TRADOC	70	3.8	210	
3.7	BRAG	FORSCOM	79	2.7	239	
3.9	BENN	TRADOC	68	4.6	230	
3.9	STEW	FORSCOM	89	4.7	614	
4.2	JACK	TRADOC	74	2.1	167	
4.3	LEWS	FORSCOM	83	3.0	372	
4.4	ORD	FORSCOM	77	2.3	218	
4.4	IRWN	FORSCOM	69	5.1	305	
4.7	POLK	FORSCOM	70	4.3	306	
4.8	CAMP	FORSCOM	65	5.1	231	
4.8	HILL	TRADOC	86	2.3	333	
4.9	LSTR	AMC	98	3.0	634	
4.9	HOOD	FORSCOM	81	2.4	307	
5.8	SAMH	FORSCOM	72	2.2	217	
5.9	PICK	TRADOC	62	3.7	144	
5.9	DRUM	FORSCOM	90	2.6	533	
6.7	EUST	TRADOC	85	2.3	473	
6.9	CARS	FORSCOM	64	15.4	938	
7.1	SHER	FORSCOM	73	2.6	334	
7.4	GREE	FORSCOM	83	2.1	440	
7.5	SENE	AMC	66	5.3	437	
8.0	MCPH	FORSCOM	81	3.4	705	
8.9	SERA	AMC	75	2.7	483	
9.1	DEVN	FORSCOM	78	2.3	472	
10.2	WAIN	FORSCOM	79	1.4	349	
11.8	PRES	FORSCOM	65	5.1	573	
13.2	RICH	FORSCOM	72	3.3	726	
21.8	MCCY	FORSCOM	63	1.6	277	
27.7	CHAP	TRADOC	56	4.8	92	

5 CONCLUSIONS

The data analysis which has been performed supports several conclusions regarding PAVER and Red Book pavement maintenance data. These conclusions are as follows:

- 1. Analysis of the Red Book data alone indicates that the cost of pavement maintenance per 1000 square yards has been consistently lower for TRADOC installations than for FORSCOM installations for 1984 through 1987, the last 4 years for which data was available. No significant differences were observed in overall PCI between the commands.
- 2. Analysis of PAVER and Red Book data for FORSCOM installations showed only a marginal correlation between Red Book cost data and PAVER PCI data. This may indicate that expenditures for pavement maintenance do not necessarily lead to higher PCIs. It is more likely, however, that this indicates that present maintenance practices run from good to bad. Similar tasks may be performed more or less effectively at each installation, resulting in varying costs to acquire equivalent PCIs. Poor correlations would be expected under these circumstances.
- 3. Analysis of PAVER and Red Book data for TRADOC installations indicated a strong degree of correlation between PAVER PCI data and Red Book cost data. This may be an indication of the effectiveness of the TRADOC pavement management program. As more TRADOC installations implement PAVER it will be possible to further evaluate the correlations observed.
- 4. It was demonstrated that even without significant correlations between PAVER and Red Book data, it is possible to develop a rational pavement management performance indicator by ranking installations based on favorable or unfavorable pavement quality and maintenance cost characteristics. As stated previously, the objective of this work effort was to develop an analytical method of using available Red Book and PAVER PCI data to measure DEH performance in managing pavement maintenance. While the small amount of data, and the low degree of correlation observed, did not allow conclusive determination of a pavement management performance indicator, the analysis did indicate several potentially useful parameters. These parameters, namely IPCI; the inspection year PCI, DRATE; the deterioration rate, and UCAV; the average annual unit cost, were shown to be useful in construction of prototype performance indicators, of which K2 was judged to be the most appropriate.

In spite of the poor correlations, the concept of using the PAVER inspection methodology and Red Book (or other) cost data to develop management performance indicators is sound. PAVER's ability to objectively evaluate pavement condition is a powerful tool which can be used to manage pavement maintenance and, with cost data, also can be used to evaluate the effectiveness of management programs.

APPENDIX A DATA MATRICES FOR ALL RANK AND PRIMARY RANK PAVEMENT

PCI AND RED BOOK DATA - FAVEMENT OF ALL RANKS (-1 indicates missing data)

	SY	ACSY	PCSY	YEAR	AGE	IPCI	LCIS3	DPATE	PY.SY	CAV	UCAV	ACVD 1	KS87	IJC87
BRAG	3581161	3370118	155388	1986.1	11.5	79	70	2.7	5706	1314146	239	200	6604	95
CNF	3455344	3098826	356518	1296.3	24.4	65	53	5.1	3477	812803	231	207	3591	100
CARS	1503591	1279708	8225	1287.0	5.1	64	48	15.4	1534	1466033	938	788	1554	665
DEVII	891907	894907	0	1987.0	9.1	78	73	2.3	1521	690056	472	340	1853	220
DRUM	528698	446508	82190	1987.0	8.1	50	81	2.6	1501	1310918	533	333	2005	211;
HOOD	4260265	3971804	43086	1986.7	10.3	81	76	2.4	5468	1698749	307	280	4392	190
HMAR	1394245	1375167	19078	1387.0	12.7	72	63	2.2	2367	476789	217	208	2821	51
$\Pi I\!\!\! \Gamma I$	555566	546621	0	1296.0	2.4	75	54	9.0	1273	200313	135	151	1770	203
LEWS	3212982	2757068	117369	1988.0	6.9	83	80	3.0	2410	694756	372	303	3114	273
:XCCY	771136	703975	67211	1386.0	33.9	63	53	1.6	1077	303012	277	230	1226	143
MOTH	121322	120895	427	1987.0	8.7	21	75	3.4	883	391105	705	686	-1	- 1
CAC	3013778	2930470	21719	1305.7	11.3	17	70	2.3	4939	322614	218	163	6372	119
POLK	2324209	2127451	196758	1988.0	13.6	70	66	4.3	4903	1461061	306	243	4533	235
FPES	3451776	3098826	352950	1986.3	24.4	65	53	5.1	2414	837941	573	408	1420	316
RILY	2516052	2111383	211826	1986.0	8.3	69	50	19.9	3017	1542729	576	512	1	-1
SHER	212341	212341	0	1987.0	10.2	73	58	2.6	68 5	227861	334	295	û u ê	172
STEW	925351	897549	27802	1986.0	4.5	89	77	4.7	2485	1088540	614	574	1640	1116
GREE	2556364	2142195	75420	1938.0	32.1	33	31	2.1	106	16353	110	167	100	Ć
RICH	665970	665970	0	1987.0	29.2	72	66	3.3	739	531764	726	316	631	1347
WAIN	478379	468581	9798	1987.0	30.3	79	76	1.4	3691	480080	349	119	1254	171
IRWN	644784	644117	667	1986.0	10.8	69	54	5.1	1341	403104	305	215	1541	i)
BEIN	2670590	2292908	371811	1298.0	13.1	68	63	4.6	6830	1545270	230	234	7723	32
CHAF	954530	329530	32430	1986.8	14.9	56	4 6	4.8	4357	375733	92	94	6133	47
DIX	52036	45955	5141	1987.0	8.4	84	75	4.0	1517	629225	415	325	1427	237
EUST	458477	383682	74795	1980.1	10.0	85	66	2.3	202	393572	473	381	303	21?
HILL	898745	263765	0	1987.0	17.6	86	81	2.3	1389	303946	333	296	- 1	-1
JACK	1122461	783860	0	1986.5	14.5	74	63	2.1	2123	353419	167	139	2114	117
KDIOX	1940561	1871308	69253	1984.0	10.3	70	52	3.8	3368	659394	210	169	4237	113
FICK	678099	510576	21858	1987.5	12.1	62	57	3.7	1478	176372	144	127	- 1	1
LECW	1678404	1677977	127	1286.0	8.2	75	62	1.5	3597	176864	130	97	- 1	- 1
SERA	2204899	1868422	62804	1985.5	15.4	75	66	2.7	1801	866683	483	340	1621	1193
CEITE	1371395	1371395	0	1988.0	8.0	66	61	5.3	1242	544691	437	351	1336	493
LHRU	628368	272514	15209	1985.0	32.4	73	68	1.2	756	49219	65	58	734	73
LSTR	40280	16386	0	1985.0	3.2	ġ8	86	3.0	1149	675863	634	576	1652	5 " 1

PCI AND RED BOOK DATA - PRIMARY PAVEMENTS

(-1 indicates missing data)

	SY	ACSY	PCSY	YEAR	AGE	IPCI	PC189	DRATE	rksy	CAV	UCAV	UCADJ	KS87	UC87
BRAG	824565	809836	14729	1986.0	10.3	77	69	2.7	5706	1314146	239	200	6604	95
CAMP	1536166	1488246	47920	1986.2	18.6	64	49	6.8	3477	812803	231	207	3581	190
CARS	572505	570508	1997	1987.1	6.3	66	52	7.0	1534	1466033	938	788	1554	665
DEVN	114648	114648	0	1987.0	7.7	83	80	1.9	1521	690056	472	340	1853	220
DRUM	4138	4138	0	1987.0	2.6	38	96	0.8	1501	1310918	533	399	2685	2114
HOOD	1899821	1879691	20130	1986.8	9.5	81	76	2.2	5468	1698749	307	280	4392	380
Samh	163805	168305	0	1987.0	9.0	79	75	2.3	2367	476789	217	208	2824	51
INDI	91214	91214	0	1986.0	10.5	81	74	2.3	1278	258913	185	151	1770	203
LEW2	676377	667245	9132	1988.0	6.6	85	82	2.6	2410	694756	372	303	3114	279
MCCY	299522	287472	12050	1986.0	34.7	61	56	1.6	1077	303212	277	230	1226	143
MCPH	39401	39401	0	1987.0	4.4	88	78	6.2	883	391105	705	686	-1	-1
ORD	729133	729133	0	1986.3	9.5	77	69	3.2	4939	922614	218	163	6973	118
POLK	938353	851616	86737	1988.0	21.5	70	65	5.5	4903	1461061	306	243	4533	235
FRES	240796	-1	-1	1987.9	17.8	72	70	2.0	2414	837941	573	408	1490	246
RILY	1351220	1236104	75646	1986.0	5.2	74	54	22.1	3017	1542729	576	512	- 1	-1
SHER	7861	7851	0	1987.0	5.1	88	85	1.8	685	227861	334	285	885	332
STEW	177364	177364	0	1986.0	5.4	84	64	7.9	2485	1088540	614	574	1640	1116
GREE	505289	505289	0	1988.0	16.0	85	82	2.3	106	46953	440	167	102	663
RICH	235634	235634	0	1987.0	27.7	70	65	2.5	739	531764	726	316	681	1347
WAIN	165132	165132	0	1987.0	31.7	81	78	1.5	3691	480080	349	110	4254	171
IRWN	267541	267541	0	1986.0	3.8	77	59	6.0	1341	403104	305	215	1541	0
BENN	1371797	1178383	193414	1988.0	10.9	68	63	4.9	6830	1545270	230	234	7723	92
CHAF	523645	245298	0	1986.9	11.7	51	41	6.0	4357	375733	92	94	6133	47
DIX	27093	27093	0	1987.0	4.2	83	73	5.1	1517	629225	415	325	1497	237
EUST	138350	117943	20407	1981.0	7.7	90	72	2.3	802	393572	473	384	806	213
HILL	637841	213928	0	1987.0	18.5	87	83	1.9	1389	303946	333	296	-1	-1
JACK	160692	160692	0	1986.2	7.8	86	79	2.4	2129	353419	167	138	2114	117
KNOX	959438	923251	36187	1984.0	8.9	73	53	4.2	3368	658394	210	169	4287	113
PICK	169715	169715	0	1987.9	8.8	60	54	5.1	1478	176372	144	127	-1	- 1
LECH	197115	197115	0	1986.0	7.0	75	62	4.3	3587	476864	130	97	- 1	- 1
SERA	487941	487941	0	1986.5	8.6	77	68	3.6	1801	866683	483	340	1621	1192
SENE	286298	286293	0	1988.0	5.9	73	68	4.8	1242	544691	437	351	1336	433
LHRN	47979	34868	0	1985.0	13.5	93	85	2.0	756	49219	65	58	784	73

APPENDIX B CORRELATION MATRICES FOR DATA PARTITIONED BY MACOM

Correlation Matrix for All Pavements - FORSCOM Only

Correlatio	ns: SY	ACSY	PCSY	AGE	IPCI	PCI89
SY	1.0000	.9967**	.6412**	.0371	0824	0945
ACSY	.9967**	1.0000	.6144*	.0269	0766	0839
PCSY	.6412**	.6144*	1.0000	.2530	3600	3925
AGE	.0371	.0269	. 2530	1.0000	3461	1015
IPCI	0824	0766	3600	3461	1.0000	.9152**
PCI89	0945	0839	3925	1015	.9152**	1.0000
DRATE	.0572	.0194	.1968	3336	3870	6438**
RKSY	.6746**	.7108**	.3458	1279	.0477	.0274
CAV	.5024	.5065*	.3223	4189	.0525	1230
UCAV	2518	2841	1050	1409	.0162	1297
UCADJ	1810	2071	0475	4644	.0077	1967
KS87	.5320*	.5730*	.1860	2014	.1651	.1729
UC87	3108	3285	1627	1037	.5047	.4022
Minimum pa	irwise N of	cases:	19	Significa	ance: * -	.01 **001
Correlation	ns: DRATE	RKSY	CAV	UCAV	UCADJ	KS87
SY	.0572	.6746**	.5024	2518	1810	.5320*
ACSY	.0194	.7108**	.5065*	2841	2071	.5730*
PCSY	.1968	.3458	.3223	1050	0475	.1860
AGE	3336	1279	4189	1409	4644	2014
IPCI	3870	.0477	.0525	.0162	.0077	.1651
PCI89	6438**	.0274	1230	1297	1967	.1729
DRATE	1.0000	0500	.4136	.4347	.5298*	2242
RKSY	0500	1.0000	.6645**	4100	2596	.9232**
CAV	.4136	.6645**	1.0000	.2232	.3719	.5334*
UCAV	.4347	4100	.2232	1.0000	.8685**	4755
UCADJ	.5298*	2596	.3719	.8685**	1.0000	3275
KS87	2242	.9232**	.5334*	4755	3275	1.0000
UC87	.0376	3312	.2420	.6026*	.4573	3036
Minimum pa	irwise N of	cases:	19	Significa		.01 **001
Correlation	ns: UC87					
SY	3108					
ACSY	3285					
PCSY	1627					
AGE	1037					
IPCI	.5047					
PCI89	.4022					
DRATE	.0376					
RKSY	3312					
CAV	.2420					
UCAV	.6026*					
UCADJ	.4573					
KS87	3036					
UC87	1.0000					
Minimum pa	irwise N of	cases:	19	Significa	ance: * -	.01 **001

Correlation Matrix for All Pavements - TRADOC Only

Correlation	s: SY	ACSY	PCSY	AGE	IPCI	PCI89
SY	1.0000	.9525**	.7002	.0753	3552	3270
ACSY	.9525**	1.0000	.6544	2161	2662	3260
PCSY	.7002	.6544	1.0000	.0473	2086	1292
AGE	.0753	2161	.0473	1.0000	1757	.1308
IPCI	3552	2662	2086	1757	1.0000	.8661*
PCI89	3270	3260	1292	.1308	.8661*	
DRATE	.3926	.4145	.3467	3312	6124	5820
RKSY	.8447*	.7555*	.7592*	.0790	5549	4538
CAV	.7116	.7060	.9223**	1155	0814	0237
UCAV	4603	3734	.0282	2177	.8315*	.6552
UCADJ	3759	3281	.1558	1014	.7875*	.6589
KS87	.7924	.6575	.6973	.5502	8253	6089
UC87	6551	4666	2864	8505	.9599*	.7916
Minimum pai	rwise N of	cases:	6	Significa	nce: * -	.01 **001
Correlation	s: DRATE	RKSY	CAV	UCAV	UCADJ	KS87
SY	.3926	.8447*	.7116	4603	3759	.7924
ACSY	.4145	.7555*	.7060	3734	3281	.6575
PCSY	.3467	.7592*	.9223**	.0282	.1558	.6973
AGE	3312	.0790	1155	2177	1014	.5502
IPCI	6124	5549	0814	.8315*	.7875*	8253
PCI89	5820	4538	0237	.6552	.6589	6089
DRATE	1.0000	.7049	.4508	4786	4592	.7774
RKSY	.7049	1.0000	.7946*	4976	3988	.9816**
CAV	. 4508	.7946*	1.0000	.0590	.1554	.6688
UCAV	4786	4976	.0590	1.0000	.9849**	6704
UCADJ	4592	3988	.1554	.9849**	1.0000	5520
KS87	.7774	.9816**	.6688	6704	5520	1.0000
UC87	4437	7439	1888	.9442*	.8867*	8120
Minimum pai	rwise N of	cases:	6	Significa	ance: * -	.01 **001
Correlation	s: UC87					
SY	6551					
ACSY	4666					
PCSY	2864					
AGE	8505					
IPCI	.9599*					
PCI89	.7916					
DRATE	4437					
RKSY	7439					
CAV	1888					
UCAV	.9442*					
UCADJ	.8867*					
KS87	8120					
UC87	1.0000					
Minimum pai	rwise N of	cases:	6	Signific	ance: * -	.01 **001

Correlation Matrix for All Pavements - AMC Only

Correlations: SY	ACSY	PCSY	AGE	IPCI	PCI89
SY 1.0000	.9792	.7803	.0779	6512	7450
ACSY .9792	1.0000	.6693	1011	6290	7272
PCSY .7803	.6693	1.0000	. 2709	2135	3095
AGE .0779	1011	.2709	1.0000	4509	3870
IPCI6512	6290	2135	4509	1.0000	.9910*
PCI897450	7272	3095	3876	.9910*	1.0000
DRATE .2414	.4298	3315	7305	2509	2878
RKSY .7797	.8139	.7308	4317	0617	1948
CAV .4571	.5476	.4336	7499	.2843	.1586
UCAV .0184	.1589	0117	9502	.5627	.4737
UCADJ1936	0482	1905	9552	.6789	.6123
KS87 .2143	.3233	.2382	8558	.4912	.3806
UC87 .6933	.7174	.7408	4450	.0834	0507
Minimum pairwise N of		4	Signific		.01 **001
Correlations: DRATE	RKSY	CAV	UCAV	UCADJ	KS87
SY .2414	.7797	.4571	.0184	1936	.2143
ACSY .4298	.8139	.5476	.1589	0482	.3233
PCSY3315	.7308	.4336	0117	1905	.2382
AGE7305	4317	7499	9502	9552	8558
IPCI2509	0617	.2843	.5627	.6789	.4912
PCI892878	1948	.1586	.4737	.6123	.3806
DRATE 1.0000	.3233	.4492	.5393	.4958	.4431
RKSY .3233	1.0000	.9044	.6003	.4190	.7663
CAV .4492	.9044	1.0000	.8832	.7662	.9665
UCAV .5393	.6003	.8832	1.0000	.9771	.9684
UCADJ .4958	.4190	.7662	.9771	1.0000	.9012
KS87 .4431	.7663	.9665	.9684	.9012	1.0000
UC87 .2252	.9873*	.9252	.6448	.4781	.8115
Minimum pairwise N of		4	Signific		.01 **001
Correlations: UC87					
SY .6933					
ACSY .7174					
PCSY .7408					
AGE4450					
IPCI .0834					
PCI890507					
DRATE .2252					
RKSY .9873*					
CAV .9252					
UCAV .6448					
UCADJ .4781					
KS87 .8115					
UC87 1.0000					
Minimum pairwise N o	f cases:	4	Signific	ance: * -	.01 **001

Correlation Matrix for Primary Pavement - FORSCOM Only

Correlation	s: SY	ACSY	PCSY	AGE	IPCI	PCI89
SY	1.0000	.9989**	.6566**	.0109	3765	4195
ACSY	.9989**	1.0000	.6221*	.0232	3949	4116
PCSY	.6566**	.6221*	1.0000	.1438	4270	4496
AGE	.0109	.0232	.1438	1.0000	5733*	2579
		3949	4270	5733*	1.0000	.8775**
IPCI	3765				.8775**	1.0000
PCI89	4195	4116	4496	2579		
DRATE	.4056	.3668	.6147*	2741	2291	5566*
RKSY	.6647**	.6694**	.4647	.0539	1904	1760
CAV	.6157*	.6132*	.5280*	2577	1235	2347
UCAV	2094	1979	1231	1605	.0079	1112
UCADJ	0889	0842	0015	4275	.0363	1853
KS87	.5120	.5003	.3476	0384	0287	0206
UC87	2684	2795	2281	1572	.4249	.3444
Minimum pai	rwise N of	cases:	18	Significa	ince: * -	.01 **001
Correlation	s: DRATE	RKSY	CAV	UCAV	UCADJ	KS87
SY	.4056	.6647**	.6157*	2094	0889	.5120
ACSY	.3668	.6694**	.6132*	1979	0842	.5003
PCSY	.6147*	.4647	.5280*	1231	0015	.3476
AGE	2741	.0539	2577	1605	4275	0384
IPCI	2291	1904	1235	.0079	.0363	0287
PCI89	5566*	1760	2347	1112	1853	0206
DRATE	1.0000	.0958	.4064	.3029	.4490	.0026
RKSY	.0958	1.0000	.6645**	4100	2596	.9232**
CAV	.4064	.6645**	1.0000	.2232	.3719	.5334*
UCAV	.3029	4100	.2232	1.0000	.8685**	4755
		2596	.3719	.8685**	1.0000	3275
UCADJ	.4490	.9232**	.5334*	4755	3275	1.0000
K\$87	.0026				.4573	3036
UC87	0606	3312	.2420	.6026*		-
Minimum pai	rwise N of	cases:	18	Significa	ance: * -	.01 **001
Correlation	s: UC87					
SY	2684					
ACSY	2795					
PCSY	2281					
AGE	1572					
IPCI	.4249					
PCI89	.3444					
DRATE	0606					
RKSY	3312					
CAV	.2420					
UCAV	.6026*					
UCADJ	.4573					
KS87	3036					
UC87	1.0000					
Minimum pai		cases.	18	Signific	ance: * -	.01 **001
urnimum ba	THISE IS OI	cases.	10	oraniti (.,_

Correlation Matrix for Primary Pavement - TRADOC Only

Correlations: SY	ACSY	PCSY	AGE	IPCI	PCI89
SY 1.0000	.9405**	.8096*	.4768	2903	2 4 33
ACSY .9405**	1.0000	.8523*	.1795	2693	2931
PCSY .8096*	.8523*	1.0000	.1042	1582	0780
AGE .4768	.1795	.1042	1.0000	0727	
IPCI2903	2693	1582	0727	1.0000	.1142
PCI892433	2931	0780	.1142	.9111**	.9111**
DRATE .1547	.2189	.1895	3167		1.0000
RKSY .7722*	.7803*	.7728*		8393*	8032*
CAV .7554*	.8191*	.9469**	.1058 - .0484	5472	4735
UCAV1837	1990			0987	0554
UCADJ0540		.0117	0850	.7287	.6192
	1006	.1370	.0341	.6796	.6134
· · · · · · · · · · · · · · · · · · ·	.7582	.6927	3271	8350	6743
	4936	2842	8998*	.8031	.6850
Minimum pairwise N of	cases:	6	Significa	ance: * -	.01 **001
Correlations: DRATE	RKSY	CAV	UCAV	UCADJ	KS87
SY .1547	.7722*	.7554*	1837	0540	.8713
ACSY .2189	.7803*	.8191*	1990	1006	.7582
PCSY .1895	.7728*	.9469**	.0117	.1370	.6927
AGE3167	.1058	0484	0850	.0341	.8271
IPCI8393*	5472	0987	.7287	.6796	8350
PCI898032*	4735	0554	.6192	.6134	6743
DRATE 1.0000	.5177	.2785	4669	4608	.6519
RKSY .5177	1.0000	.7946*	4976	3988	.9816**
CAV .2785	.7946*	1.0000	.0590	.1554	.6688
UCAV4669	4976	.0590	1.0000	.9849**	6704
UCADJ4608	3988	.1554	.9849**	1.0000	5520
KS87 .6519	.9816**	.6688	6704	5520	1.0000
UC873835	7439	1888	.9442*	5520 .8867*	8120
Minimum pairwise N of		1000			
minimum pairwise N Or	Cases:	0	Significa	ance: * -	.01 **001
Correlations: UC87					
SY6123					
ACSY4936					
PCSY28 4 2					
AGE8998★					
IPCI .8031					
PCI89 .6850					
DRATE3835					
RKSY7439					
CAV1888					
UCAV .9442*					
UCADJ .8867*					
KS878120					
UC87 1.0000					
Minimum pairwise N of	cases:	6	Significa	nce: * -	.01 **001

Correlation Matrix for Primary Pavement - AMC Only (. - indicates coefficient could not be calculated)

Correlatio	ons: SY	ACSY	PCSY	AGE	IPCI	PCI89
SY	1.0000	.9999*	•	6723	7865	8891
ACSY	.9999*	1.0000	•	6835	7959	8959
PCSY	•	•	1.0000	•	•	•
AGE	6723	6835	•	1.0000	.9859	.9366
IPCI	7865	7959	•	.9859	1.0000	.9820
PCI89	8891	8959	•	.9366	.9820	1.0000
DRATE	.6084	.6204	•	9965	9686	9042
RKSY	.9961	.9946	•	6043	7289	8452
CAV	.9973	.9983	•	7251	8299	9204
UCAV	.9305	.9360	•	8967	9581	9950
UCADJ	.8734	.8807	•	9477	9877	9995
KS87	. 9910	.9930	•	7652	8620	9423
UC87	.9818	.9788	•	5195	6549	7859
Minimum pa	irwise N of	cases:	3	Signific	cance: * -	01 **001
Correlatio	ons: DRATE	RKSY	CAV	UCAV	UCADJ	KS87
SY	.6084	.9961	.9973	.9305	.8734	.9910
ACSY	.6204	.9946	.9983	.9360	.8807	.9930
PCSY	•	•	•	•	•	•
AGE	9965	6043	7251	8967	9477	7652
IPCI	9686	7289	8299	9581	9877	8620
PCI89	9042	8452	9204	9950	9995	9423
DRATE	1.0000	.5359	.6652	.8568	.9178	.7090
RKSY	.5359	1.0000	.9869	.8945	.8270	.9754
CAV	.6652	.9869	1.0000	.9550	.9070	.9982
UCAV	.8568	.8945	.9550	1.0000	.9911	.9711
UCADJ	.9178	.8270	.9070	.9911	1.0000	.9307
KS87	.7090	.9754	.9982	.9711	.9307	1.0000
UC87	. 4466	.9947	.9651	.8440	.7650	.9476
Minimum pa	irwise N of	cases:	3	Signific	ance: * -	.01 **001
Correlatio	ons: UC87					

Correlations: UC87

SY	.9818
ACSY	.9788
PCSY	•
AGE	5195
IPCI	6549
PCI89	7859
DRATE	.4466
RKSY	.9947
CAV	.9651
UCAV	.8440
UCADJ	.7650
KS87	.9476
UC87	1.0000

APPENDIX C WEATHER AND POPULATION DATA

PCI, RED BOOK, WEATHER, AND POPULATION DATA - PAVEMENT OF ALL RANKS (-1 indicates missing data)

	RKSY	IPCI	DRATE	CAV	UCAV	UCADJ	UC87	FREEZE	TMAX	TMIN	SNOW	SNOW87	POPLTN	SSCOST
BRAG	5706	79	2.7	1314146	239	200	95	71	70.1	49.5	7.5	7.9	42325	0.19
CAMP	3477	65	5.1	812803	231	207	100	77	69.3	49.6	11	10	38856	0.12
CARS	1534	64	15.4	14 66033	938	788	665	133	62.5	35.3	43.1	44.6	34649	0.22
DEVN	1521	78	2.3	690056	472	3 4 0	220	96	55.8	38.3	69.2	71.1	6645	0.15
DRUM	1501	90	2.6	1310918	533	399	2114	90	56.5	38.8	109.9	111.4	42129	0.25
HOOD	54 68	81	2.4	1698749	307	280	380	32	77.9	56.5	1.4	1.5	66287	0.18
Samh	2367	72	2.2	476789	217	208	51	24	79.5	58.4	8.0	0.1	25491	0.2
INDI	1278	75	9.0	258913	185	151	203	95	61.3	44	35.1	26.7	3401	0.1
LEWS	2410	83	3.0	694756	372	303	279	19	59	43.7	12.2	0	57573	0.2
MCCY	1077	63	1.6	303212	277	230	143	96	55.7	37	41.6	37.8	5098	0.09
MCPH	883	81	3.4	391105	705	686	-1	49	70.7	52.2	2	4.2	10121	0.19
ORD	4939	77	2.3	922614	218	163	118	0	64.9	4 8	0	0	20611	0.06
POLK	4903	70	4.3	1461061	306	243	235	4 2	75.9	55.8	1.9	.2	30001	0.16
PRES	2414	65	5.1	837 941	573	408	2 4 6	0	64.9	48	0	0	15960	0.04
RILY	3017	69	19.9	1542729	576	512	-1	105	65.4	43.9	21.5	21.8	61163	0.1
SHER	685	73	2.6	227861	334	285	332	90	58.5	39.4	39.4	42.6	4910	0.25
STEW	2 4 85	89	4.7	1088540	614	574	1116	39	76.1	57.5	0.3	0	24991	0.18
GREE	106	83	2.1	46953	440	167	663	50	36.3	16.2	65.1	39.9	2008	0.15
RICH	739	72	3.3	531764	726	316	1347	107	4 2.8	28	68.6	79.9	12977	0.08
WAIN	3691	79	1.4	480080	349	110	171	50	36.3	16.2	65.1	39.9	10872	0.25
IRWN	1341	69	5.1	403104	305	215	0	24	80.1	52.3	1.3	0	11914	0.18
B enn	6830	68	4.6	1545270	230	234	92	51	76.1	53.7	0.5	1	46995	-1
CHAF	4357	56	4.8	375733	92	94	47	72	72.1	50.6	6.7	15.8	24824	-1
DIX	1517	84	4.0	629225	415	325	237	86	62.9	46.2	21.6	15	52109	-1
EUST	802	85	2.3	393572	473	38 4	213	56	68	51.6	7.6	4.7	15413	-1
HILL	1389	86	2.3	303946	333	296	-1	61	66.4	48.6	17.3	25	9743	-1
JACK	2129	74	2.1	353419	167	138	117	70	74.4	52.8	1.8	4.3	20254	-1
KINOX	3368	70	3.8	658394	210	169	113	80	66.1	47.4	17	8.5	37370	-1
PICK	1478	62	3.7	176372	144	127	-1	88	68.8	46.7	14.5	12.6	9 4 80	-1
LEOW	3587	75	4.5	476864	130	97	-1	93	65	44.5	23.2	33	60500	-1
SERA	1801	75	2.7	866683	48 3	340	1192	24	80.1	52.3	1.3	0	1325	-1
SENE	1242	66	5.3	544691	437	351	493	90	56.5		109.9		20 42	-1
LHRN	756	73	1.2	49219	65	58	73	80	76.8	50.6	5.9	32.5	998	-1
LSTR	1149	98	3.0	675863	634	576	573	32	77.9	56.5	1.4	1.5	2100	-1

APPENDIX D

ANALYSIS OF VARIANCE TABLES

Variable IPCI

By Variable: Major Command

Analysis of Variance

Source	D.F.	Sum of Squares	Mean Squares	F F Ratio Prob	١.
Between Groups	2	61.1611	30.5805	.3498 .7075	,
Within Groups	31	2709.8095	87.4132		
Total	33	2770.9706			

Variable DRATE

By Variable: Major Command

Analysis of Variance

Source	D.F.	Sum of Squares	Mean Squares	F Ratio	F Prob.
Between Groups	2	15.9866	7.9933	.5484	.5834
Within Groups	31	451.8757	14.5766		
Total	33	467.8624			

Variable SNOW

By Variable: Major Command

Analysis of Variance

Source	D.F.	Sum of Squares	Mean Squares	F Ratio	F Prob.
Between Groups	2	1779.3901	889.6950	.9376	.4024
Within Groups	31	29415.6926	948.8933		
Total	33	31195.0826			

Note: In order to be considered significant, the value of the F probability (F Prob.) must be less than .01

USACERL DISTRIBUTION

Chief of Engineers

ATTN: CEHEC-IM-LH (2) ATTN: CEHEC-IM-LP (2) ATTN: CERD-L

CEHSC

ATTN: CEHSC-FB-P 22060

Fort Belvoir, VA

ATTN: CECC-R 22060

Defense Technical Info. Center ATTN: DTIC-FAB (2) 22304

9 8/90